mirror of
https://github.com/notwa/mm
synced 2024-11-05 02:39:02 -08:00
192 lines
5.7 KiB
Lua
192 lines
5.7 KiB
Lua
-- Random Number Generator reversal script for Bizhawk
|
|
-- original algorithm by trivial171 (rng, v2, rnginverse functions)
|
|
-- please refer to this video: https://www.youtube.com/watch?v=-9YLCoK5K6o
|
|
-- everything else by notwa
|
|
|
|
local abs = math.abs
|
|
local floor = math.floor
|
|
local pow = math.pow
|
|
|
|
-- Lua 5.3 is nice and precise and doesn't coerce everything into doubles.
|
|
local precise = 0xDEADBEEF * 0x12345678 % 0x100000000 == 0x5621CA08
|
|
|
|
-- constants of the LCG:
|
|
local m = 1664525 -- 0x0019660D
|
|
local b = 1013904223 -- 0x3C6EF35F
|
|
local gcd = 4 -- of m and 2^32
|
|
|
|
local powers = {}
|
|
for i = 1, 32 do
|
|
powers[i] = floor(pow(2, i - 1))
|
|
end
|
|
local big32 = floor(pow(2, 32))
|
|
|
|
local gamedb = {
|
|
-- pairs of (RNG state address, display list address):
|
|
-- Ocarina of Time (J) 1.0
|
|
["C892BBDA3993E66BD0D56A10ECD30B1EE612210F"] = {0x105440, 0x11F290},
|
|
-- Ocarina of Time (U) 1.0
|
|
["AD69C91157F6705E8AB06C79FE08AAD47BB57BA7"] = {0x105440, 0x11F290},
|
|
-- Ocarina of Time (J) 1.2
|
|
["FA5F5942B27480D60243C2D52C0E93E26B9E6B86"] = {0x105A80, 0x11F958},
|
|
-- Ocarina of Time (U) 1.2
|
|
["41B3BDC48D98C48529219919015A1AF22F5057C2"] = {0x105A80, 0x11F958},
|
|
-- Majora's Mask (J) 1.0
|
|
["5FB2301AACBF85278AF30DCA3E4194AD48599E36"] = {0x098550, 0x1F9E28},
|
|
-- Majora's Mask (J) 1.1
|
|
["41FDB879AB422EC158B4EAFEA69087F255EA8589"] = {0x098490, 0x1FA0D8},
|
|
-- Majora's Mask (U) 1.0
|
|
["D6133ACE5AFAA0882CF214CF88DABA39E266C078"] = {0x097530, 0x1F9CB8},
|
|
-- Doubutsu no Mori (J) 1.0
|
|
["E106DFF7146F72415337C96DEB14F630E1580EFB"] = {0x03C590, 0x145080},
|
|
}
|
|
|
|
local function mulmod(a, b, q)
|
|
if precise then return a * b % q end
|
|
|
|
-- this needs to be done because old versions of Lua
|
|
-- store everything as doubles. that means we have 52 bits
|
|
-- to work with instead of the 64 that Lua 5.3 provides.
|
|
local limit = 0x10000000000000
|
|
local halflimit = 0x4000000 -- half in terms of bits
|
|
-- assert(abs(a) < limit)
|
|
-- assert(abs(b) < limit)
|
|
-- assert(abs(q) <= limit)
|
|
|
|
local L = halflimit -- shorthand
|
|
local a_lo = a % L
|
|
local a_hi = floor(a / L) % L
|
|
local b_lo = b % L
|
|
local b_hi = floor(b / L) % L
|
|
return (a_lo * b_lo + (a_lo * b_hi % L + a_hi * b_lo % L) % L * L) % q
|
|
end
|
|
|
|
local function powmod(b, e, m)
|
|
-- blatantly lifted from Wikipedia and tweaked for overflows.
|
|
if m == 1 then
|
|
return 0
|
|
else
|
|
local r = 1
|
|
b = b % m
|
|
while e > 0 do
|
|
if e % 2 == 1 then
|
|
r = mulmod(r, b, m)
|
|
end
|
|
e = floor(e / 2)
|
|
b = mulmod(b, b, m)
|
|
end
|
|
return r
|
|
end
|
|
end
|
|
|
|
local function mul32(a, b)
|
|
return mulmod(a, b, big32)
|
|
end
|
|
|
|
local function inv32(x)
|
|
-- Modular inverse of x, an odd number.
|
|
-- via https://lemire.me/blog/2017/09/18/computing-the-inverse-of-odd-integers/
|
|
-- assert(x % 2, "inv32(x): x must be odd!")
|
|
local y = x % big32
|
|
for i = 1, 4 do
|
|
y = mul32(y, (2 - mul32(y, x)))
|
|
end
|
|
return y
|
|
end
|
|
|
|
local const = floor((m - 1) / gcd)
|
|
local const_inv = inv32(const)
|
|
|
|
local function rng(x)
|
|
-- The xth RNG value returned by the game.
|
|
-- Computable by geometric series formula:
|
|
-- RNG(x) = b * (m^x - 1) / (m - 1) % q
|
|
-- The denominator (m-1) shares a common factor of 4 with q,
|
|
-- so we compute the numerator mod 4q.
|
|
-- We divide by (m-1) by first dividing by 4,
|
|
-- and then multiplying by the modular inverse of the odd number (m-1)/4.
|
|
local temp = floor((powmod(m, x, gcd * big32) - 1) / gcd)
|
|
return mul32(mul32(b, temp), const_inv)
|
|
end
|
|
|
|
local function v2(a)
|
|
-- The 2-adic valuation of a; that is,
|
|
-- the largest integer v such that 2^v divides a.
|
|
if a == 0 then return 100 end -- a large dummy value
|
|
local n = a
|
|
local v = 0
|
|
while n % 2 == 0 do
|
|
n = floor(n / 2)
|
|
v = v + 1
|
|
end
|
|
return v
|
|
end
|
|
|
|
local function rnginverse(r)
|
|
-- Given an RNG value r, compute the unique x in range [0, 2^32)
|
|
-- such that RNG(x) = r. Note that x is only unique under the assumption
|
|
-- that the Linear Congruential Generator used has a period of 2^32.
|
|
|
|
-- Recover m^x mod 4q from algebra (inverting steps in RNG function above)
|
|
local q = big32 * gcd
|
|
local xpow = (mul32(mul32(r, const), inv32(b)) * gcd + 1) % q
|
|
|
|
local xguess = 0
|
|
for _, p in ipairs(powers) do -- Guess binary digits of x one by one
|
|
-- This technique is based on Mihai's lemma / lifting the exponent
|
|
local lhs = v2(powmod(m, xguess + p, q) - xpow)
|
|
local rhs = v2(powmod(m, xguess, q) - xpow)
|
|
if lhs > rhs then
|
|
xguess = xguess + p
|
|
end
|
|
end
|
|
return xguess
|
|
end
|
|
|
|
if m == 1664525 and b == 1013904223 then
|
|
-- self-tests:
|
|
assert(inv32(m - 1) == 4211439296)
|
|
assert(rng(0) == 0)
|
|
assert(rng(1) == 1013904223)
|
|
assert(rng(2) == 1196435762)
|
|
assert(rng(3) == 3519870697)
|
|
assert(1 == rnginverse(1013904223))
|
|
assert(2 == rnginverse(1196435762))
|
|
assert(3 == rnginverse(3519870697))
|
|
end
|
|
|
|
-- run the remaining code when executed in Bizhawk, otherwise exit.
|
|
if rawget(_G, "bizstring") == nil then return end
|
|
|
|
local R4 = mainmemory.read_u32_be
|
|
|
|
local hash = gameinfo.getromhash()
|
|
local addrs = gamedb[hash]
|
|
if addrs == nil then
|
|
print("unsupported ROM:")
|
|
print(hash)
|
|
return
|
|
end
|
|
|
|
local ind_prev = nil
|
|
local dlist_prev = 0
|
|
local ind_change = 0
|
|
|
|
while true do
|
|
local seed = R4(addrs[1])
|
|
local dlist = R4(addrs[2])
|
|
local ind = rnginverse(seed)
|
|
|
|
gui.text(8, 8, ("RNG: 0x%08X"):format(seed), nil, "topright")
|
|
gui.text(8, 24, ("index: 0x%08X"):format(ind), nil, "topright")
|
|
gui.text(8, 40, ("delta: %+11i"):format(ind_change), nil, "topright")
|
|
|
|
if dlist ~= dlist_prev and ind_prev ~= nil then
|
|
ind_change = ind - ind_prev
|
|
end
|
|
|
|
ind_prev = ind
|
|
dlist_prev = dlist
|
|
|
|
emu.frameadvance()
|
|
end
|