gists/response.txt

27 lines
986 B
Text
Raw Normal View History

2013-04-12 01:37:55 -07:00
if you have a transfer function like,
2013-04-12 04:02:02 -07:00
b2·s² + b1·s + b0
2013-04-12 01:37:55 -07:00
H(s) = ———————————————————
2013-04-12 04:02:02 -07:00
a2·s² + a1·s + a0
2013-04-12 01:37:55 -07:00
whereas s would be (1 - z⁻¹)(1 + z⁻¹)e^(j·ω) in the bilinear transform,
2013-04-12 04:02:02 -07:00
you can find its magnitude response with this equation:
2013-04-12 01:37:55 -07:00
2013-04-12 04:02:02 -07:00
(b2·x)² - (2·b2·b0 - b1²)·W·x·y + (b0·W·y)²
2013-04-12 01:37:55 -07:00
|H(j·ω)|² = —————————————————————————————————————————————
2013-04-12 04:02:02 -07:00
(a2·x)² - (2·a2·a0 - a1²)·W·x·y + (a0·W·y)²
2013-04-12 01:37:55 -07:00
(analog) x = ω²
y = 1
2013-04-12 04:02:02 -07:00
W = ω0²
2013-04-12 01:37:55 -07:00
(digital) x = sin(ω2)²
y = cos(ω2)²
2013-04-12 04:02:02 -07:00
W = tan(ω02)²
2013-04-12 01:37:55 -07:00
2013-04-12 04:02:02 -07:00
whereas ω is the physical frequency in rads/sec
ω0 is the center frequency in rads/sec
2013-04-12 01:37:55 -07:00
and the phase? maybe some other time
note: I'm no math genius and there's probably an error in here