This commit is contained in:
commit
097b5e519b
1 changed files with 26 additions and 0 deletions
26
gistfile1.txt
Normal file
26
gistfile1.txt
Normal file
|
@ -0,0 +1,26 @@
|
|||
if you have a transfer function like,
|
||||
|
||||
b₀·s² + b₁·s + b₂
|
||||
H(s) = ———————————————————
|
||||
a₀·s² + a₁·s + a₂
|
||||
|
||||
whereas s would be (1 - z⁻¹)∕(1 + z⁻¹)∕e^(j·ω) in the bilinear transform,
|
||||
you can find its magnitude response with this incredibly simplified equation:
|
||||
|
||||
(b₀·x)² - (2·b₀·b₂ - b₁²)·W·x·y + (b₂·W·y)²
|
||||
|H(j·ω)|² = —————————————————————————————————————————————
|
||||
(a₀·x)² - (2·a₀·a₂ - a₁²)·W·x·y + (a₂·W·y)²
|
||||
|
||||
(analog) x = ω²
|
||||
y = 1
|
||||
W = ω₀²
|
||||
|
||||
(digital) x = sin(ω∕2)²
|
||||
y = cos(ω∕2)²
|
||||
W = tan(ω₀∕2)²
|
||||
|
||||
whereas ω is the input frequency in rads/sec
|
||||
ω₀ is the center frequency in rads/sec
|
||||
|
||||
and the phase? maybe some other time
|
||||
note: I'm no math genius and there's probably an error in here
|
Loading…
Reference in a new issue