This commit is contained in:
parent
b739c4b6c0
commit
b26f4074ec
1 changed files with 9 additions and 9 deletions
18
response.txt
18
response.txt
|
@ -1,26 +1,26 @@
|
|||
if you have a transfer function like,
|
||||
|
||||
b₀·s² + b₁·s + b₂
|
||||
b2·s² + b1·s + b0
|
||||
H(s) = ———————————————————
|
||||
a₀·s² + a₁·s + a₂
|
||||
a2·s² + a1·s + a0
|
||||
|
||||
whereas s would be (1 - z⁻¹)∕(1 + z⁻¹)∕e^(j·ω) in the bilinear transform,
|
||||
you can find its magnitude response with this incredibly simplified equation:
|
||||
you can find its magnitude response with this equation:
|
||||
|
||||
(b₀·x)² - (2·b₀·b₂ - b₁²)·W·x·y + (b₂·W·y)²
|
||||
(b2·x)² - (2·b2·b0 - b1²)·W·x·y + (b0·W·y)²
|
||||
|H(j·ω)|² = —————————————————————————————————————————————
|
||||
(a₀·x)² - (2·a₀·a₂ - a₁²)·W·x·y + (a₂·W·y)²
|
||||
(a2·x)² - (2·a2·a0 - a1²)·W·x·y + (a0·W·y)²
|
||||
|
||||
(analog) x = ω²
|
||||
y = 1
|
||||
W = ω₀²
|
||||
W = ω0²
|
||||
|
||||
(digital) x = sin(ω∕2)²
|
||||
y = cos(ω∕2)²
|
||||
W = tan(ω₀∕2)²
|
||||
W = tan(ω0∕2)²
|
||||
|
||||
whereas ω is the input frequency in rads/sec
|
||||
ω₀ is the center frequency in rads/sec
|
||||
whereas ω is the physical frequency in rads/sec
|
||||
ω0 is the center frequency in rads/sec
|
||||
|
||||
and the phase? maybe some other time
|
||||
note: I'm no math genius and there's probably an error in here
|
||||
|
|
Loading…
Reference in a new issue