78 lines
3.4 KiB
Python
78 lines
3.4 KiB
Python
def prune_results(results, multiple, _check=False):
|
|
# if there are more than `multiple` results for one optimizer+objective pair,
|
|
# then trim the bottom and top until there are only `multiple` left.
|
|
new_results = {}
|
|
for obj_name, obj_res in results.items():
|
|
new_res = {}
|
|
for fopt, opt_name, extra in sorted(obj_res):
|
|
l = new_res.setdefault(opt_name, [[], []])
|
|
l[0].append(fopt)
|
|
l[1].append(extra)
|
|
slices = {}
|
|
for opt_name, res in new_res.items():
|
|
# in the event that an odd number of results needs to be trimmed,
|
|
# prefer trimming from the bottom (i.e. worse solutions get removed first).
|
|
fopts, extras = res
|
|
down = (len(fopts) - multiple) // 2
|
|
up = len(fopts) - (len(fopts) - multiple + 1) // 2
|
|
slices[opt_name] = slice(down, up)
|
|
for opt_name, res in new_res.items():
|
|
fopts, extras = res
|
|
s = slices[opt_name]
|
|
fopts, extras = fopts[s], extras[s]
|
|
if _check:
|
|
assert len(fopts) == multiple, (len(fopts), multiple)
|
|
if len(fopts) == multiple:
|
|
for fopt, extra in zip(fopts, extras):
|
|
result = (fopt, opt_name, extra)
|
|
new_results.setdefault(obj_name, []).append(result)
|
|
return results
|
|
|
|
|
|
def perform_another_experimental_scoring_method(results):
|
|
if len(results) and len(something := next(iter(results.values()))[0]) == 3:
|
|
history_length = len(something[2])
|
|
each = {}
|
|
# for i in (history_length - 1,):
|
|
for i in range(history_length):
|
|
# for k, v in results.items(): for vi in v: assert len(vi) == 3, vi
|
|
l = {k: [(res[2][i], res[1]) for res in v] for k, v in results.items()}
|
|
for k, v in perform_another_experimental_scoring_method(l).items():
|
|
each.setdefault(k, []).append(v)
|
|
return {k: sum(v) / len(v) for k, v in each.items()}
|
|
|
|
new_results = {}
|
|
all_opt_names = set()
|
|
for obj_name, obj_res in results.items():
|
|
all_res = {}
|
|
for fopt, opt_name in obj_res:
|
|
all_res.setdefault(fopt, []).append(opt_name)
|
|
all_opt_names.add(opt_name)
|
|
new_results[obj_name] = dict(sorted(all_res.items()))
|
|
|
|
limited_by_floating_point_precision = 53
|
|
|
|
best_ranks_and_counts = {}
|
|
for outer_rank in range(1, limited_by_floating_point_precision + 1):
|
|
for obj_name, all_res in new_results.items():
|
|
for fopt, opt_names in all_res.items():
|
|
dirty = False
|
|
for opt_name in set(opt_names):
|
|
if opt_name in best_ranks_and_counts:
|
|
rank, count = best_ranks_and_counts[opt_name]
|
|
if rank == outer_rank:
|
|
best_ranks_and_counts[opt_name] = (rank, count + 1)
|
|
dirty = True
|
|
else:
|
|
best_ranks_and_counts[opt_name] = (outer_rank, 1)
|
|
dirty = True
|
|
if dirty:
|
|
break
|
|
|
|
scores = {k: 0.0 for k in all_opt_names}
|
|
for opt_name, (rank, count) in best_ranks_and_counts.items():
|
|
points = 2 ** (1 - rank)
|
|
count = min(count, limited_by_floating_point_precision)
|
|
scores[opt_name] = score = sum(points / 2**i for i in range(count))
|
|
|
|
return scores
|