move fib and prune_results into utilities

This commit is contained in:
Connor Olding 2023-05-09 18:36:06 -07:00
parent 665910b70c
commit 03a25e010a
3 changed files with 38 additions and 35 deletions

View file

@ -2,7 +2,6 @@ from .go_benchmark_lists import *
from .go_benchmarks import problems_2d, problems_3d, problems_4d
from .parties import parties
from .utilities import OWrap, COWrap, m1, m33, m36, prog
from .utilities import perform_another_experimental_scoring_method
import numpy as np
all_problems = {
@ -155,12 +154,11 @@ for problem_list in GO_BENCHMARKS.values():
def main(argv, display=True):
from .utilities import fib
from .utilities import prune_results, perform_another_experimental_scoring_method
from tqdm import tqdm
import sys
def fib(n):
return pow(2 << n, n + 1, (4 << 2 * n) - (2 << n) - 1) % (2 << n)
def optimizer_filter(name):
# worst scoring optimizers: (awards=(5, 3, 2, 1)) (obj=146, opt=389) (dims=2, evals=80)
# evosax_pbt with (score: 0, price: 593) -593
@ -262,36 +260,6 @@ def main(argv, display=True):
return s
def prune_results(results, multiple):
# if there are more than `multiple` results for one optimizer+objective pair,
# then trim the bottom and top until there are only `multiple` left.
new_results = {}
for obj_name, obj_res in results.items():
new_res = {}
for fopt, opt_name, extra in sorted(obj_res):
l = new_res.setdefault(opt_name, [[], []])
l[0].append(fopt)
l[1].append(extra)
slices = {}
for opt_name, res in new_res.items():
# in the event that an odd number of results needs to be trimmed,
# prefer trimming from the bottom (i.e. worse solutions get removed first).
fopts, extras = res
down = (len(fopts) - multiple) // 2
up = len(fopts) - (len(fopts) - multiple + 1) // 2
slices[opt_name] = slice(down, up)
for opt_name, res in new_res.items():
fopts, extras = res
s = slices[opt_name]
fopts, extras = fopts[s], extras[s]
if not no_summary:
assert len(fopts) == multiple, (len(fopts), multiple)
if len(fopts) == multiple:
for fopt, extra in zip(fopts, extras):
result = (fopt, opt_name, extra)
new_results.setdefault(obj_name, []).append(result)
return results
reset = "\033[m"
quieter = True
@ -388,7 +356,7 @@ def main(argv, display=True):
run += 1
all_results = results
results = prune_results(results, multiple)
results = prune_results(results, multiple, _check=not no_summary)
scores, prices = {}, {}
all_opt_names = set()

View file

@ -21,3 +21,7 @@ def phi(d):
for i in range(30 if d == 1 else max(10, 28 - d)):
x = pow(1 + x, 1 / (d + 1))
return x
def fib(n):
return pow(2 << n, n + 1, (4 << 2 * n) - (2 << n) - 1) % (2 << n)

View file

@ -1,3 +1,34 @@
def prune_results(results, multiple, _check=False):
# if there are more than `multiple` results for one optimizer+objective pair,
# then trim the bottom and top until there are only `multiple` left.
new_results = {}
for obj_name, obj_res in results.items():
new_res = {}
for fopt, opt_name, extra in sorted(obj_res):
l = new_res.setdefault(opt_name, [[], []])
l[0].append(fopt)
l[1].append(extra)
slices = {}
for opt_name, res in new_res.items():
# in the event that an odd number of results needs to be trimmed,
# prefer trimming from the bottom (i.e. worse solutions get removed first).
fopts, extras = res
down = (len(fopts) - multiple) // 2
up = len(fopts) - (len(fopts) - multiple + 1) // 2
slices[opt_name] = slice(down, up)
for opt_name, res in new_res.items():
fopts, extras = res
s = slices[opt_name]
fopts, extras = fopts[s], extras[s]
if _check:
assert len(fopts) == multiple, (len(fopts), multiple)
if len(fopts) == multiple:
for fopt, extra in zip(fopts, extras):
result = (fopt, opt_name, extra)
new_results.setdefault(obj_name, []).append(result)
return results
def perform_another_experimental_scoring_method(results):
if len(results) and len(something := next(iter(results.values()))[0]) == 3:
history_length = len(something[2])