begin reorganizing into a module
This commit is contained in:
parent
83380ea42f
commit
6be9cac743
26 changed files with 47 additions and 37 deletions
8
.gitignore
vendored
8
.gitignore
vendored
|
@ -1,3 +1,7 @@
|
|||
__pycache__/*
|
||||
*.old
|
||||
*.bak
|
||||
*.old
|
||||
__pycache__/*
|
||||
cache/*
|
||||
EvoloPy-master/*
|
||||
lesser_pyopus/*
|
||||
t/*
|
||||
|
|
5
thursday/__main__.py
Normal file
5
thursday/__main__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
from .go_benchmark_it import main
|
||||
|
||||
main(["thursday", "everything", "-2"])
|
||||
main(["thursday", "everything", "-3"])
|
||||
main(["thursday", "everything", "-4"])
|
|
@ -1,6 +1,6 @@
|
|||
from dlib import find_min_global
|
||||
from randomcube2 import another_random_cube
|
||||
from utils import wrap_untrustworthy, final
|
||||
from .randomcube2 import another_random_cube
|
||||
from .utils import wrap_untrustworthy, final
|
||||
|
||||
|
||||
def dlib_cube(objective, n_trials, n_dim, with_count):
|
|
@ -1,4 +1,4 @@
|
|||
from utils import wrap_untrustworthy, final, ExhaustedTrialsError
|
||||
from .utils import wrap_untrustworthy, final, ExhaustedTrialsError
|
||||
import numpy as np
|
||||
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
from scipy.optimize import Bounds
|
||||
from unittest.mock import patch
|
||||
from utils import wrap_untrustworthy, final
|
||||
from .utils import wrap_untrustworthy, final
|
||||
import numpy as np
|
||||
|
||||
|
|
@ -1,9 +1,9 @@
|
|||
from go_benchmark_lists import *
|
||||
from go_benchmarks import problems_2d, problems_3d, problems_4d
|
||||
from notwacube import book_of_optimizers
|
||||
from prog80 import prog
|
||||
from utils import OWrap, COWrap, m1, m33, m36
|
||||
from utils import perform_another_experimental_scoring_method
|
||||
from .go_benchmark_lists import *
|
||||
from .go_benchmarks import problems_2d, problems_3d, problems_4d
|
||||
from .notwacube import book_of_optimizers
|
||||
from .prog80 import prog
|
||||
from .utils import OWrap, COWrap, m1, m33, m36
|
||||
from .utils import perform_another_experimental_scoring_method
|
||||
import numpy as np
|
||||
|
||||
all_problems = {
|
||||
|
@ -155,7 +155,7 @@ for problem_list in GO_BENCHMARKS.values():
|
|||
), "please use Infinity instead; it's basically equivalent"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def main(argv):
|
||||
from tqdm import tqdm
|
||||
import sys
|
||||
|
||||
|
@ -312,9 +312,9 @@ if __name__ == "__main__":
|
|||
percents = dict(frugal_percent=1.0, greedy_percent=2.0)
|
||||
|
||||
book = book_of_optimizers
|
||||
which = book[sys.argv[1]] if len(sys.argv) > 1 else book["standard"]
|
||||
n_dim = int(sys.argv[2]) if len(sys.argv) > 2 else -2
|
||||
n_trials = int(sys.argv[3]) if len(sys.argv) > 3 else fib(abs(n_dim) + 4) * 10
|
||||
which = book[argv[1]] if len(argv) > 1 else book["standard"]
|
||||
n_dim = int(argv[2]) if len(argv) > 2 else -2
|
||||
n_trials = int(argv[3]) if len(argv) > 3 else fib(abs(n_dim) + 4) * 10
|
||||
|
||||
place_names = ("1st", "2nd", "3rd", "4th")
|
||||
assert n_dim < 0, "unsupported in this version"
|
||||
|
@ -495,10 +495,10 @@ if __name__ == "__main__":
|
|||
except PermissionError:
|
||||
print("# failed to write previous.py, ignoring...")
|
||||
|
||||
if len(sys.argv) > 1 and sys.argv[1] in ("positive", "negative"):
|
||||
if len(argv) > 1 and argv[1] in ("positive", "negative"):
|
||||
all_old_opt_names = set(opt.__name__ for opt in optimizers)
|
||||
C = set(("quasirandom_cube", "another_random_cube"))
|
||||
if sys.argv[1] == "positive" and set(positive) - C == all_old_opt_names - C:
|
||||
if argv[1] == "positive" and set(positive) - C == all_old_opt_names - C:
|
||||
exit(2) # no changes
|
||||
if sys.argv[1] == "negative" and set(negative) - C == all_old_opt_names - C:
|
||||
if argv[1] == "negative" and set(negative) - C == all_old_opt_names - C:
|
||||
exit(2) # no changes
|
|
@ -1,8 +1,8 @@
|
|||
from dlibcube2 import dlib_cube
|
||||
from evolopycube2 import make_evolopy
|
||||
from nevergradcube2 import NEVERGRAD2_OPTIMIZERS
|
||||
from nloptcube2 import nlopt_neldermead_cube
|
||||
from fcmaescube2 import (
|
||||
from .dlibcube2 import dlib_cube
|
||||
from .evolopycube2 import make_evolopy
|
||||
from .nevergradcube2 import NEVERGRAD2_OPTIMIZERS
|
||||
from .nloptcube2 import nlopt_neldermead_cube
|
||||
from .fcmaescube2 import (
|
||||
make_biteopt,
|
||||
make_csma,
|
||||
make_fcmaes,
|
||||
|
@ -12,9 +12,9 @@ from fcmaescube2 import (
|
|||
make_gclde,
|
||||
make_lclde,
|
||||
)
|
||||
from notwacube2 import make_birect, make_mercury, make_soo
|
||||
from randomcube2 import another_random_cube, quasirandom_cube
|
||||
from scipycube2 import (
|
||||
from .notwacube2 import make_birect, make_mercury, make_soo
|
||||
from .randomcube2 import another_random_cube, quasirandom_cube
|
||||
from .scipycube2 import (
|
||||
make_shgo,
|
||||
scipy_basinhopping_cube,
|
||||
scipy_bfgs_2j_cube,
|
||||
|
@ -42,7 +42,7 @@ from scipycube2 import (
|
|||
# scipy_trustncg_cube,
|
||||
)
|
||||
|
||||
import tinytweaks as tt
|
||||
from . import tinytweaks as tt
|
||||
|
||||
BASELINE_OPTIMIZERS = [
|
||||
another_random_cube,
|
|
@ -1,10 +1,10 @@
|
|||
from utils import wrap_untrustworthy, check, final
|
||||
from .utils import wrap_untrustworthy, check, final
|
||||
import numpy as np
|
||||
import tinytweaks as tt
|
||||
from . import tinytweaks as tt
|
||||
|
||||
|
||||
def make_birect(deepness=23, *, longest=False, pruning=False):
|
||||
from birect import birect
|
||||
from .birect import birect
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
feval_count = 0
|
||||
|
@ -37,7 +37,7 @@ def make_soo(deepness=None, *, K=3):
|
|||
if deepness is None:
|
||||
deepness = int(31 * np.log(2) / np.log(K) - 1e-8)
|
||||
assert K >= 2
|
||||
from soo import soo
|
||||
from .soo import soo
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
feval_count = 0
|
||||
|
@ -61,7 +61,7 @@ def make_soo(deepness=None, *, K=3):
|
|||
def make_mercury(
|
||||
flags, bounding="clip", *, isigma=tt.IV, popsize=2, irate=1, seed=None
|
||||
):
|
||||
from hg import minimize as hg
|
||||
from .hg import minimize as hg
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials, bounding=bounding)
|
|
@ -1,4 +1,4 @@
|
|||
from utils import phi
|
||||
from .utils import phi
|
||||
import numpy as np
|
||||
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
from utils import wrap_untrustworthy, check, final, ExhaustedTrialsError
|
||||
from .utils import wrap_untrustworthy, check, final, ExhaustedTrialsError
|
||||
import numpy as np
|
||||
import scipy.optimize as scopt
|
||||
|
|
@ -176,6 +176,7 @@ def perform_another_experimental_scoring_method(results):
|
|||
if len(results) and len(something := next(iter(results.values()))[0]) == 3:
|
||||
history_length = len(something[2])
|
||||
each = {}
|
||||
# for i in (history_length - 1,):
|
||||
for i in range(history_length):
|
||||
# for k, v in results.items(): for vi in v: assert len(vi) == 3, vi
|
||||
l = {k: [(res[2][i], res[1]) for res in v] for k, v in results.items()}
|
||||
|
@ -271,4 +272,4 @@ try:
|
|||
except ModuleNotFoundError:
|
||||
pass
|
||||
else:
|
||||
from utils_np import *
|
||||
from .utils_np import *
|
|
@ -1,6 +1,6 @@
|
|||
# i've separated numpy-dependent methods from the rest of the utils.
|
||||
from time import time
|
||||
from utils import AcquireForWriting, merge_summaries, feps, m33, m34, m93
|
||||
from .utils import AcquireForWriting, merge_summaries, feps, m33, m34, m93
|
||||
import numpy as np
|
||||
|
||||
|
Loading…
Reference in a new issue