add some optimizers from fcmaes (AKA fast-cma-es)

This commit is contained in:
Connor Olding 2023-05-06 21:32:09 -07:00
parent eea778a67c
commit 83380ea42f
2 changed files with 193 additions and 0 deletions

172
fcmaescube2.py Normal file
View file

@ -0,0 +1,172 @@
from scipy.optimize import Bounds
from unittest.mock import patch
from utils import wrap_untrustworthy, final
import numpy as np
def _fix_logging(original_function):
from functools import wraps
@wraps(original_function)
def wrapped_function(*args, **kwargs):
with patch("logging.FileHandler"): # do not create a file on import
import fcmaes.optimizer
fcmaes.optimizer._logger = None
return original_function(*args, **kwargs)
return wrapped_function
@_fix_logging
def make_biteopt(depth=1):
from fcmaes.optimizer import Bite_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
optim = Bite_cpp(max_evaluations=n_trials, M=depth)
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = f"fcmaes_biteopt_d{depth}"
f.__name__ = name + "_cube"
return f
@_fix_logging
def make_csma(isigma=3):
from fcmaes.optimizer import Csma_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
optim = Csma_cpp(max_evaluations=n_trials)
_xopt, _fopt, _feval_count = optim.minimize(
_objective, bounds, sdevs=1 / isigma
)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = f"fcmaes_csma_is{isigma:02}"
f.__name__ = name + "_cube"
return f
@_fix_logging
def make_fcmaes(popsize=None):
from fcmaes.optimizer import Cma_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
ps = int(4 + 3 * np.log(n_dim)) if popsize is None else popsize
optim = Cma_cpp(
max_evaluations=n_trials,
popsize=ps,
stop_hist=0.0,
workers=1,
delayed_update=False,
)
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds, sdevs=1 / 3)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = "fcmaes_cma"
name += f"_auto" if popsize is None else f"_ps{popsize}"
f.__name__ = name + "_cube"
return f
@_fix_logging
def make_crfmnes(popsize=None):
from fcmaes.optimizer import Crfmnes_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
ps = int(4 + 3 * np.log(n_dim)) if popsize is None else popsize
optim = Crfmnes_cpp(max_evaluations=n_trials, popsize=ps)
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds, sdevs=1 / 3)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = "fcmaes_crfmnes"
name += f"_auto" if popsize is None else f"_ps{popsize}"
f.__name__ = name + "_cube"
return f
_broken = """
@_fix_logging
def make_lde(popsize=None):
from fcmaes.optimizer import LDe_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
optim = LDe_cpp(max_evaluations=n_trials, popsize=popsize)
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = "fcmaes_lde"
name += f"_auto" if popsize is None else f"_ps{popsize}"
f.__name__ = name + "_cube"
return f
"""
@_fix_logging
def make_da(local=True):
from fcmaes.optimizer import Da_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
optim = Da_cpp(max_evaluations=n_trials, use_local_search=local)
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = "fcmaes_da"
if local:
name += "_local"
f.__name__ = name + "_cube"
return f
@_fix_logging
def make_gclde(popsize=None):
from fcmaes.optimizer import GCLDE_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
optim = GCLDE_cpp(max_evaluations=n_trials, popsize=popsize)
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = "fcmaes_gclde"
name += f"_auto" if popsize is None else f"_ps{popsize}"
f.__name__ = name + "_cube"
return f
@_fix_logging
def make_lclde(popsize=None):
from fcmaes.optimizer import LCLDE_cpp
def f(objective, n_trials, n_dim, with_count):
_objective = wrap_untrustworthy(objective, n_trials)
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
optim = LCLDE_cpp(max_evaluations=n_trials, popsize=popsize)
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = "fcmaes_lclde"
name += f"_auto" if popsize is None else f"_ps{popsize}"
f.__name__ = name + "_cube"
return f

View file

@ -2,6 +2,16 @@ from dlibcube2 import dlib_cube
from evolopycube2 import make_evolopy
from nevergradcube2 import NEVERGRAD2_OPTIMIZERS
from nloptcube2 import nlopt_neldermead_cube
from fcmaescube2 import (
make_biteopt,
make_csma,
make_fcmaes,
make_crfmnes,
# make_lde,
make_da,
make_gclde,
make_lclde,
)
from notwacube2 import make_birect, make_mercury, make_soo
from randomcube2 import another_random_cube, quasirandom_cube
from scipycube2 import (
@ -62,6 +72,17 @@ EVOLOPY_OPTIMIZERS = [
for popsize in (None, 5, 10, 15)
]
FCMAES_OPTIMIZERS = [
make_biteopt(1),
make_biteopt(2),
make_csma(3),
make_da(False), # TODO: fix local=True case.
] + [
maker(popsize)
for maker in (make_fcmaes, make_crfmnes, make_gclde, make_lclde)
for popsize in (None, 5, 10, 15)
]
def collect_everything():
G = globals().values()