add some optimizers from fcmaes (AKA fast-cma-es)
This commit is contained in:
parent
eea778a67c
commit
83380ea42f
2 changed files with 193 additions and 0 deletions
172
fcmaescube2.py
Normal file
172
fcmaescube2.py
Normal file
|
@ -0,0 +1,172 @@
|
|||
from scipy.optimize import Bounds
|
||||
from unittest.mock import patch
|
||||
from utils import wrap_untrustworthy, final
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _fix_logging(original_function):
|
||||
from functools import wraps
|
||||
|
||||
@wraps(original_function)
|
||||
def wrapped_function(*args, **kwargs):
|
||||
with patch("logging.FileHandler"): # do not create a file on import
|
||||
import fcmaes.optimizer
|
||||
fcmaes.optimizer._logger = None
|
||||
return original_function(*args, **kwargs)
|
||||
|
||||
return wrapped_function
|
||||
|
||||
|
||||
@_fix_logging
|
||||
def make_biteopt(depth=1):
|
||||
from fcmaes.optimizer import Bite_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
optim = Bite_cpp(max_evaluations=n_trials, M=depth)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = f"fcmaes_biteopt_d{depth}"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
||||
|
||||
|
||||
@_fix_logging
|
||||
def make_csma(isigma=3):
|
||||
from fcmaes.optimizer import Csma_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
optim = Csma_cpp(max_evaluations=n_trials)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(
|
||||
_objective, bounds, sdevs=1 / isigma
|
||||
)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = f"fcmaes_csma_is{isigma:02}"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
||||
|
||||
|
||||
@_fix_logging
|
||||
def make_fcmaes(popsize=None):
|
||||
from fcmaes.optimizer import Cma_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
ps = int(4 + 3 * np.log(n_dim)) if popsize is None else popsize
|
||||
optim = Cma_cpp(
|
||||
max_evaluations=n_trials,
|
||||
popsize=ps,
|
||||
stop_hist=0.0,
|
||||
workers=1,
|
||||
delayed_update=False,
|
||||
)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds, sdevs=1 / 3)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = "fcmaes_cma"
|
||||
name += f"_auto" if popsize is None else f"_ps{popsize}"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
||||
|
||||
|
||||
@_fix_logging
|
||||
def make_crfmnes(popsize=None):
|
||||
from fcmaes.optimizer import Crfmnes_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
ps = int(4 + 3 * np.log(n_dim)) if popsize is None else popsize
|
||||
optim = Crfmnes_cpp(max_evaluations=n_trials, popsize=ps)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds, sdevs=1 / 3)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = "fcmaes_crfmnes"
|
||||
name += f"_auto" if popsize is None else f"_ps{popsize}"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
||||
|
||||
|
||||
_broken = """
|
||||
@_fix_logging
|
||||
def make_lde(popsize=None):
|
||||
from fcmaes.optimizer import LDe_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
optim = LDe_cpp(max_evaluations=n_trials, popsize=popsize)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = "fcmaes_lde"
|
||||
name += f"_auto" if popsize is None else f"_ps{popsize}"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
||||
"""
|
||||
|
||||
|
||||
@_fix_logging
|
||||
def make_da(local=True):
|
||||
from fcmaes.optimizer import Da_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
optim = Da_cpp(max_evaluations=n_trials, use_local_search=local)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = "fcmaes_da"
|
||||
if local:
|
||||
name += "_local"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
||||
|
||||
|
||||
@_fix_logging
|
||||
def make_gclde(popsize=None):
|
||||
from fcmaes.optimizer import GCLDE_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
optim = GCLDE_cpp(max_evaluations=n_trials, popsize=popsize)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = "fcmaes_gclde"
|
||||
name += f"_auto" if popsize is None else f"_ps{popsize}"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
||||
|
||||
|
||||
@_fix_logging
|
||||
def make_lclde(popsize=None):
|
||||
from fcmaes.optimizer import LCLDE_cpp
|
||||
|
||||
def f(objective, n_trials, n_dim, with_count):
|
||||
_objective = wrap_untrustworthy(objective, n_trials)
|
||||
bounds = Bounds([0.0] * n_dim, [1.0] * n_dim)
|
||||
optim = LCLDE_cpp(max_evaluations=n_trials, popsize=popsize)
|
||||
_xopt, _fopt, _feval_count = optim.minimize(_objective, bounds)
|
||||
fopt, xopt, feval_count = _objective(final)
|
||||
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
|
||||
|
||||
name = "fcmaes_lclde"
|
||||
name += f"_auto" if popsize is None else f"_ps{popsize}"
|
||||
f.__name__ = name + "_cube"
|
||||
return f
|
21
notwacube.py
21
notwacube.py
|
@ -2,6 +2,16 @@ from dlibcube2 import dlib_cube
|
|||
from evolopycube2 import make_evolopy
|
||||
from nevergradcube2 import NEVERGRAD2_OPTIMIZERS
|
||||
from nloptcube2 import nlopt_neldermead_cube
|
||||
from fcmaescube2 import (
|
||||
make_biteopt,
|
||||
make_csma,
|
||||
make_fcmaes,
|
||||
make_crfmnes,
|
||||
# make_lde,
|
||||
make_da,
|
||||
make_gclde,
|
||||
make_lclde,
|
||||
)
|
||||
from notwacube2 import make_birect, make_mercury, make_soo
|
||||
from randomcube2 import another_random_cube, quasirandom_cube
|
||||
from scipycube2 import (
|
||||
|
@ -62,6 +72,17 @@ EVOLOPY_OPTIMIZERS = [
|
|||
for popsize in (None, 5, 10, 15)
|
||||
]
|
||||
|
||||
FCMAES_OPTIMIZERS = [
|
||||
make_biteopt(1),
|
||||
make_biteopt(2),
|
||||
make_csma(3),
|
||||
make_da(False), # TODO: fix local=True case.
|
||||
] + [
|
||||
maker(popsize)
|
||||
for maker in (make_fcmaes, make_crfmnes, make_gclde, make_lclde)
|
||||
for popsize in (None, 5, 10, 15)
|
||||
]
|
||||
|
||||
|
||||
def collect_everything():
|
||||
G = globals().values()
|
||||
|
|
Loading…
Reference in a new issue