2023-05-06 20:10:20 -07:00
|
|
|
""" Sine Cosine OPtimization Algorithm """
|
|
|
|
|
|
|
|
import random
|
|
|
|
import numpy
|
|
|
|
import math
|
2023-05-06 20:12:43 -07:00
|
|
|
from .solution import solution
|
2023-05-06 20:10:20 -07:00
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
def SCA(objf, lb, ub, dim, SearchAgents_no, Max_iter):
|
|
|
|
|
|
|
|
# destination_pos
|
|
|
|
Dest_pos = numpy.zeros(dim)
|
|
|
|
Dest_score = float("inf")
|
|
|
|
|
|
|
|
if not isinstance(lb, list):
|
|
|
|
lb = [lb] * dim
|
|
|
|
if not isinstance(ub, list):
|
|
|
|
ub = [ub] * dim
|
|
|
|
|
|
|
|
# Initialize the positions of search agents
|
|
|
|
Positions = numpy.zeros((SearchAgents_no, dim))
|
|
|
|
for i in range(dim):
|
|
|
|
Positions[:, i] = (
|
|
|
|
numpy.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[i]
|
|
|
|
)
|
|
|
|
|
|
|
|
Convergence_curve = numpy.zeros(Max_iter)
|
|
|
|
s = solution()
|
|
|
|
|
|
|
|
# Loop counter
|
|
|
|
print('SCA is optimizing "' + objf.__name__ + '"')
|
|
|
|
|
|
|
|
timerStart = time.time()
|
|
|
|
s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S")
|
|
|
|
|
|
|
|
# Main loop
|
|
|
|
for l in range(0, Max_iter):
|
|
|
|
for i in range(0, SearchAgents_no):
|
|
|
|
|
|
|
|
# Return back the search agents that go beyond the boundaries of the search space
|
|
|
|
for j in range(dim):
|
|
|
|
Positions[i, j] = numpy.clip(Positions[i, j], lb[j], ub[j])
|
|
|
|
|
|
|
|
# Calculate objective function for each search agent
|
|
|
|
fitness = objf(Positions[i, :])
|
|
|
|
|
|
|
|
if fitness < Dest_score:
|
|
|
|
Dest_score = fitness # Update Dest_Score
|
|
|
|
Dest_pos = Positions[i, :].copy()
|
|
|
|
|
|
|
|
# Eq. (3.4)
|
|
|
|
a = 2
|
|
|
|
Max_iteration = Max_iter
|
|
|
|
r1 = a - l * ((a) / Max_iteration) # r1 decreases linearly from a to 0
|
|
|
|
|
|
|
|
# Update the Position of search agents
|
|
|
|
for i in range(0, SearchAgents_no):
|
|
|
|
for j in range(0, dim):
|
|
|
|
|
|
|
|
# Update r2, r3, and r4 for Eq. (3.3)
|
|
|
|
r2 = (2 * numpy.pi) * random.random()
|
|
|
|
r3 = 2 * random.random()
|
|
|
|
r4 = random.random()
|
|
|
|
|
|
|
|
# Eq. (3.3)
|
|
|
|
if r4 < (0.5):
|
|
|
|
# Eq. (3.1)
|
|
|
|
Positions[i, j] = Positions[i, j] + (
|
|
|
|
r1 * numpy.sin(r2) * abs(r3 * Dest_pos[j] - Positions[i, j])
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# Eq. (3.2)
|
|
|
|
Positions[i, j] = Positions[i, j] + (
|
|
|
|
r1 * numpy.cos(r2) * abs(r3 * Dest_pos[j] - Positions[i, j])
|
|
|
|
)
|
|
|
|
|
|
|
|
Convergence_curve[l] = Dest_score
|
|
|
|
|
|
|
|
if l % 1 == 0:
|
|
|
|
print(
|
|
|
|
["At iteration " + str(l) + " the best fitness is " + str(Dest_score)]
|
|
|
|
)
|
|
|
|
|
|
|
|
timerEnd = time.time()
|
|
|
|
s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S")
|
|
|
|
s.executionTime = timerEnd - timerStart
|
|
|
|
s.convergence = Convergence_curve
|
|
|
|
s.optimizer = "SCA"
|
|
|
|
s.bestIndividual = Dest_pos
|
|
|
|
s.objfname = objf.__name__
|
|
|
|
|
|
|
|
return s
|