thursday/evolopy/GWO.py

146 lines
4.3 KiB
Python
Raw Normal View History

2023-05-06 20:10:20 -07:00
# -*- coding: utf-8 -*-
"""
Created on Mon May 16 00:27:50 2016
@author: Hossam Faris
"""
import random
import numpy
import math
from .solution import solution
2023-05-06 20:10:20 -07:00
import time
def GWO(objf, lb, ub, dim, SearchAgents_no, Max_iter):
# Max_iter=1000
# lb=-100
# ub=100
# dim=30
# SearchAgents_no=5
# initialize alpha, beta, and delta_pos
Alpha_pos = numpy.zeros(dim)
Alpha_score = float("inf")
Beta_pos = numpy.zeros(dim)
Beta_score = float("inf")
Delta_pos = numpy.zeros(dim)
Delta_score = float("inf")
if not isinstance(lb, list):
lb = [lb] * dim
if not isinstance(ub, list):
ub = [ub] * dim
# Initialize the positions of search agents
Positions = numpy.zeros((SearchAgents_no, dim))
for i in range(dim):
Positions[:, i] = (
numpy.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[i]
)
Convergence_curve = numpy.zeros(Max_iter)
s = solution()
# Loop counter
print('GWO is optimizing "' + objf.__name__ + '"')
timerStart = time.time()
s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S")
# Main loop
for l in range(0, Max_iter):
for i in range(0, SearchAgents_no):
# Return back the search agents that go beyond the boundaries of the search space
for j in range(dim):
Positions[i, j] = numpy.clip(Positions[i, j], lb[j], ub[j])
# Calculate objective function for each search agent
fitness = objf(Positions[i, :])
# Update Alpha, Beta, and Delta
if fitness < Alpha_score:
Delta_score = Beta_score # Update delte
Delta_pos = Beta_pos.copy()
Beta_score = Alpha_score # Update beta
Beta_pos = Alpha_pos.copy()
Alpha_score = fitness
# Update alpha
Alpha_pos = Positions[i, :].copy()
if fitness > Alpha_score and fitness < Beta_score:
Delta_score = Beta_score # Update delte
Delta_pos = Beta_pos.copy()
Beta_score = fitness # Update beta
Beta_pos = Positions[i, :].copy()
if fitness > Alpha_score and fitness > Beta_score and fitness < Delta_score:
Delta_score = fitness # Update delta
Delta_pos = Positions[i, :].copy()
a = 2 - l * ((2) / Max_iter)
# a decreases linearly fron 2 to 0
# Update the Position of search agents including omegas
for i in range(0, SearchAgents_no):
for j in range(0, dim):
r1 = random.random() # r1 is a random number in [0,1]
r2 = random.random() # r2 is a random number in [0,1]
A1 = 2 * a * r1 - a
# Equation (3.3)
C1 = 2 * r2
# Equation (3.4)
D_alpha = abs(C1 * Alpha_pos[j] - Positions[i, j])
# Equation (3.5)-part 1
X1 = Alpha_pos[j] - A1 * D_alpha
# Equation (3.6)-part 1
r1 = random.random()
r2 = random.random()
A2 = 2 * a * r1 - a
# Equation (3.3)
C2 = 2 * r2
# Equation (3.4)
D_beta = abs(C2 * Beta_pos[j] - Positions[i, j])
# Equation (3.5)-part 2
X2 = Beta_pos[j] - A2 * D_beta
# Equation (3.6)-part 2
r1 = random.random()
r2 = random.random()
A3 = 2 * a * r1 - a
# Equation (3.3)
C3 = 2 * r2
# Equation (3.4)
D_delta = abs(C3 * Delta_pos[j] - Positions[i, j])
# Equation (3.5)-part 3
X3 = Delta_pos[j] - A3 * D_delta
# Equation (3.5)-part 3
Positions[i, j] = (X1 + X2 + X3) / 3 # Equation (3.7)
Convergence_curve[l] = Alpha_score
if l % 1 == 0:
print(["At iteration " + str(l) + " the best fitness is " + str(Alpha_score)])
timerEnd = time.time()
s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime = timerEnd - timerStart
s.convergence = Convergence_curve
s.optimizer = "GWO"
s.bestIndividual = Alpha_pos
s.objfname = objf.__name__
return s