thursday/evolopy/FFA.py

140 lines
4 KiB
Python
Raw Normal View History

2023-05-06 20:10:20 -07:00
# -*- coding: utf-8 -*-
"""
Created on Sun May 29 00:49:35 2016
@author: hossam
"""
#% ======================================================== %
#% Files of the Matlab programs included in the book: %
#% Xin-She Yang, Nature-Inspired Metaheuristic Algorithms, %
#% Second Edition, Luniver Press, (2010). www.luniver.com %
#% ======================================================== %
#
#% -------------------------------------------------------- %
#% Firefly Algorithm for constrained optimization using %
#% for the design of a spring (benchmark) %
#% by Xin-She Yang (Cambridge University) Copyright @2009 %
#% -------------------------------------------------------- %
import numpy
import math
import time
from .solution import solution
2023-05-06 20:10:20 -07:00
def alpha_new(alpha, NGen):
#% alpha_n=alpha_0(1-delta)^NGen=10^(-4);
#% alpha_0=0.9
delta = 1 - (10 ** (-4) / 0.9) ** (1 / NGen)
alpha = (1 - delta) * alpha
return alpha
def FFA(objf, lb, ub, dim, n, MaxGeneration):
# General parameters
# n=50 #number of fireflies
# dim=30 #dim
# lb=-50
# ub=50
# MaxGeneration=500
# FFA parameters
alpha = 0.5 # Randomness 0--1 (highly random)
betamin = 0.20 # minimum value of beta
gamma = 1 # Absorption coefficient
if not isinstance(lb, list):
lb = [lb] * dim
if not isinstance(ub, list):
ub = [ub] * dim
zn = numpy.ones(n)
zn.fill(float("inf"))
# ns(i,:)=Lb+(Ub-Lb).*rand(1,d);
ns = numpy.zeros((n, dim))
for i in range(dim):
ns[:, i] = numpy.random.uniform(0, 1, n) * (ub[i] - lb[i]) + lb[i]
Lightn = numpy.ones(n)
Lightn.fill(float("inf"))
# [ns,Lightn]=init_ffa(n,d,Lb,Ub,u0)
convergence = []
s = solution()
print('FFA is optimizing "' + objf.__name__ + '"')
timerStart = time.time()
s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S")
# Main loop
for k in range(0, MaxGeneration): # start iterations
#% This line of reducing alpha is optional
alpha = alpha_new(alpha, MaxGeneration)
#% Evaluate new solutions (for all n fireflies)
for i in range(0, n):
zn[i] = objf(ns[i, :])
Lightn[i] = zn[i]
# Ranking fireflies by their light intensity/objectives
Lightn = numpy.sort(zn)
Index = numpy.argsort(zn)
ns = ns[Index, :]
# Find the current best
nso = ns
Lighto = Lightn
nbest = ns[0, :]
Lightbest = Lightn[0]
#% For output only
fbest = Lightbest
#% Move all fireflies to the better locations
# [ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,nbest,...
# Lightbest,alpha,betamin,gamma,Lb,Ub);
scale = []
for b in range(dim):
scale.append(abs(ub[b] - lb[b]))
scale = numpy.array(scale)
for i in range(0, n):
# The attractiveness parameter beta=exp(-gamma*r)
for j in range(0, n):
r = numpy.sqrt(numpy.sum((ns[i, :] - ns[j, :]) ** 2))
# r=1
# Update moves
if Lightn[i] > Lighto[j]: # Brighter and more attractive
beta0 = 1
beta = (beta0 - betamin) * math.exp(-gamma * r ** 2) + betamin
tmpf = alpha * (numpy.random.rand(dim) - 0.5) * scale
ns[i, :] = ns[i, :] * (1 - beta) + nso[j, :] * beta + tmpf
# ns=numpy.clip(ns, lb, ub)
convergence.append(fbest)
IterationNumber = k
BestQuality = fbest
if k % 1 == 0:
print(
["At iteration " + str(k) + " the best fitness is " + str(BestQuality)]
)
#
####################### End main loop
timerEnd = time.time()
s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime = timerEnd - timerStart
s.convergence = convergence
s.optimizer = "FFA"
s.bestIndividual = nbest
s.objfname = objf.__name__
return s