thursday/evolopy/SCA.py

94 lines
2.7 KiB
Python
Raw Normal View History

2023-05-06 20:10:20 -07:00
""" Sine Cosine OPtimization Algorithm """
import random
import numpy
import math
from .solution import solution
2023-05-06 20:10:20 -07:00
import time
def SCA(objf, lb, ub, dim, SearchAgents_no, Max_iter):
# destination_pos
Dest_pos = numpy.zeros(dim)
Dest_score = float("inf")
if not isinstance(lb, list):
lb = [lb] * dim
if not isinstance(ub, list):
ub = [ub] * dim
# Initialize the positions of search agents
Positions = numpy.zeros((SearchAgents_no, dim))
for i in range(dim):
Positions[:, i] = (
numpy.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[i]
)
Convergence_curve = numpy.zeros(Max_iter)
s = solution()
# Loop counter
print('SCA is optimizing "' + objf.__name__ + '"')
timerStart = time.time()
s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S")
# Main loop
for l in range(0, Max_iter):
for i in range(0, SearchAgents_no):
# Return back the search agents that go beyond the boundaries of the search space
for j in range(dim):
Positions[i, j] = numpy.clip(Positions[i, j], lb[j], ub[j])
# Calculate objective function for each search agent
fitness = objf(Positions[i, :])
if fitness < Dest_score:
Dest_score = fitness # Update Dest_Score
Dest_pos = Positions[i, :].copy()
# Eq. (3.4)
a = 2
Max_iteration = Max_iter
r1 = a - l * ((a) / Max_iteration) # r1 decreases linearly from a to 0
# Update the Position of search agents
for i in range(0, SearchAgents_no):
for j in range(0, dim):
# Update r2, r3, and r4 for Eq. (3.3)
r2 = (2 * numpy.pi) * random.random()
r3 = 2 * random.random()
r4 = random.random()
# Eq. (3.3)
if r4 < (0.5):
# Eq. (3.1)
Positions[i, j] = Positions[i, j] + (
r1 * numpy.sin(r2) * abs(r3 * Dest_pos[j] - Positions[i, j])
)
else:
# Eq. (3.2)
Positions[i, j] = Positions[i, j] + (
r1 * numpy.cos(r2) * abs(r3 * Dest_pos[j] - Positions[i, j])
)
Convergence_curve[l] = Dest_score
if l % 1 == 0:
print(
["At iteration " + str(l) + " the best fitness is " + str(Dest_score)]
)
timerEnd = time.time()
s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime = timerEnd - timerStart
s.convergence = Convergence_curve
s.optimizer = "SCA"
s.bestIndividual = Dest_pos
s.objfname = objf.__name__
return s