208 lines
6 KiB
Lua
208 lines
6 KiB
Lua
-- Augmented Random Search
|
|
-- https://arxiv.org/abs/1803.07055
|
|
-- with some tweaks (lips) by myself.
|
|
|
|
local abs = math.abs
|
|
local floor = math.floor
|
|
local ipairs = ipairs
|
|
local max = math.max
|
|
local print = print
|
|
|
|
local Base = require "Base"
|
|
|
|
local nn = require "nn"
|
|
local normal = nn.normal
|
|
local prod = nn.prod
|
|
local zeros = nn.zeros
|
|
|
|
local util = require "util"
|
|
local argsort = util.argsort
|
|
local calc_mean_dev = util.calc_mean_dev
|
|
|
|
local Ars = Base:extend()
|
|
|
|
local function collect_best_indices(scored, top, antithetic)
|
|
-- select one (the best) reward of each pos/neg pair.
|
|
local best_rewards
|
|
if antithetic then
|
|
best_rewards = {}
|
|
for i = 1, #scored, 2 do
|
|
local ind = floor(i / 2) + 1
|
|
local pos = scored[i + 0]
|
|
local neg = scored[i + 1]
|
|
best_rewards[ind] = max(pos, neg)
|
|
end
|
|
else
|
|
best_rewards = scored
|
|
end
|
|
|
|
local indices = argsort(best_rewards, function(a, b) return a > b end)
|
|
|
|
for i = top + 1, #best_rewards do indices[i] = nil end
|
|
return indices
|
|
end
|
|
|
|
local function kinda_lipschitz(dir, pos, neg, mid)
|
|
local _, dev = calc_mean_dev(dir)
|
|
local c0 = neg - mid
|
|
local c1 = pos - mid
|
|
local l0 = abs(3 * c1 + c0)
|
|
local l1 = abs(c1 + 3 * c0)
|
|
return max(l0, l1) / (2 * dev)
|
|
end
|
|
|
|
local function amsgrad(step) -- in-place! -- TODO: fix this.
|
|
if mom1 == nil then mom1 = nn.zeros(#step) end
|
|
if mom2 == nil then mom2 = nn.zeros(#step) end
|
|
if mom2max == nil then mom2max = nn.zeros(#step) end
|
|
|
|
local b1_t = pow(cfg.adam_b1, epoch_i)
|
|
local b2_t = pow(cfg.adam_b2, epoch_i)
|
|
|
|
-- NOTE: with LuaJIT, splitting this loop would
|
|
-- almost certainly be faster.
|
|
for i, v in ipairs(step) do
|
|
mom1[i] = cfg.adam_b1 * mom1[i] + (1 - cfg.adam_b1) * v
|
|
mom2[i] = cfg.adam_b2 * mom2[i] + (1 - cfg.adam_b2) * v * v
|
|
mom2max[i] = max(mom2[i], mom2max[i])
|
|
if cfg.adam_debias then
|
|
local num = (mom1[i] / (1 - b1_t))
|
|
local den = sqrt(mom2max[i] / (1 - b2_t)) + cfg.adam_eps
|
|
step[i] = num / den
|
|
else
|
|
step[i] = mom1[i] / (sqrt(mom2max[i]) + cfg.adam_eps)
|
|
end
|
|
end
|
|
end
|
|
|
|
function Ars:init(dims, popsize, poptop, learning_rate, sigma, antithetic)
|
|
self.dims = dims
|
|
self.popsize = popsize or 4 + (3 * floor(log(dims)))
|
|
self.learning_rate = learning_rate or 3/5 * (3 + log(dims)) / (dims * sqrt(dims))
|
|
self.sigma = sigma or 1
|
|
self.antithetic = antithetic and true or false
|
|
|
|
self.poptop = poptop or popsize
|
|
assert(self.poptop <= popsize)
|
|
if self.antithetic then self.popsize = self.popsize * 2 end
|
|
|
|
self._params = nn.zeros(self.dims)
|
|
end
|
|
|
|
function Ars:params(new_params)
|
|
if new_params ~= nil then
|
|
assert(#self._params == #new_params, "new parameters have the wrong size")
|
|
for i, v in ipairs(new_params) do self._params[i] = v end
|
|
end
|
|
return self._params
|
|
end
|
|
|
|
function Ars:ask(graycode)
|
|
local asked = {}
|
|
local noise = {}
|
|
|
|
for i = 1, self.popsize do
|
|
local asking = zeros(self.dims)
|
|
local noisy = zeros(self.dims)
|
|
asked[i] = asking
|
|
noise[i] = noisy
|
|
|
|
if self.antithetic and i % 2 == 0 then
|
|
local old_noisy = noise[i - 1]
|
|
for j, v in ipairs(old_noisy) do
|
|
noisy[j] = -v
|
|
end
|
|
else
|
|
if graycode ~= nil then
|
|
for j = 1, self.dims do
|
|
noisy[j] = exp(-precision * nn.uniform())
|
|
end
|
|
for j = 1, self.dims do
|
|
noisy[j] = nn.uniform() < 0.5 and noisy[j] or -noisy[j]
|
|
end
|
|
else
|
|
for j = 1, self.dims do
|
|
noisy[j] = self.sigma * nn.normal()
|
|
end
|
|
end
|
|
end
|
|
|
|
for j, v in ipairs(self._params) do
|
|
asking[j] = v + noisy[j]
|
|
end
|
|
end
|
|
|
|
self.noise = noise
|
|
return asked, noise
|
|
end
|
|
|
|
function Ars:tell(scored, unperturbed_score)
|
|
local indices = collect_best_indices(scored, self.poptop, self.antithetic)
|
|
--print("best trials:", indices)
|
|
|
|
local top_rewards = {}
|
|
for i = 1, #scored do top_rewards[i] = 0 end
|
|
for _, ind in ipairs(indices) do
|
|
local sind = (ind - 1) * 2 + 1
|
|
top_rewards[sind + 0] = scored[sind + 0]
|
|
top_rewards[sind + 1] = scored[sind + 1]
|
|
end
|
|
--print("top:", top_rewards)
|
|
|
|
if self.antithetic then
|
|
local top_delta_rewards = {} -- only used for printing.
|
|
for i, ind in ipairs(indices) do
|
|
local sind = (ind - 1) * 2 + 1
|
|
top_delta_rewards[i] = abs(top_rewards[sind + 0] - top_rewards[sind + 1])
|
|
end
|
|
--print("best deltas:", top_delta_rewards)
|
|
end
|
|
|
|
local step = nn.zeros(self.dims)
|
|
local _, reward_dev = calc_mean_dev(top_rewards)
|
|
if reward_dev == 0 then reward_dev = 1 end
|
|
|
|
if self.antithetic then
|
|
for i = 1, floor(self.popsize / 2) do
|
|
local ind = (i - 1) * 2 + 1
|
|
local pos = top_rewards[ind + 0]
|
|
local neg = top_rewards[ind + 1]
|
|
local reward = pos - neg
|
|
if reward ~= 0 then
|
|
local noisy = self.noise[i]
|
|
|
|
if unperturbed_score ~= nil then
|
|
local lips = kinda_lipschitz(noisy, pos, neg, unperturbed_score)
|
|
reward = reward / lips / self.sigma
|
|
else
|
|
reward = reward / reward_dev
|
|
end
|
|
|
|
for j, v in ipairs(noisy) do
|
|
step[j] = step[j] + reward * v / self.poptop
|
|
end
|
|
end
|
|
end
|
|
else
|
|
for i = 1, self.popsize do
|
|
local reward = top_rewards[i] / reward_dev
|
|
if reward ~= 0 then
|
|
local noisy = self.noise[i]
|
|
|
|
for j, v in ipairs(noisy) do
|
|
step[j] = step[j] + reward * v / self.poptop
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
for i, v in ipairs(self._params) do
|
|
self._params[i] = v + self.learning_rate * step[i]
|
|
end
|
|
|
|
self.noise = nil
|
|
end
|
|
|
|
return {
|
|
Ars = Ars,
|
|
}
|