159 lines
4.2 KiB
Lua
159 lines
4.2 KiB
Lua
-- Separable Natural Evolution Strategies
|
|
-- this particular implementation is based on:
|
|
-- http://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
|
|
-- not to be confused with the Super Nintendo Entertainment System.
|
|
|
|
local assert = assert
|
|
local floor = math.floor
|
|
local ipairs = ipairs
|
|
local log = math.log
|
|
local exp = math.exp
|
|
local max = math.max
|
|
|
|
local Base = require "Base"
|
|
|
|
local nn = require "nn"
|
|
local normal = nn.normal
|
|
local zeros = nn.zeros
|
|
|
|
local util = require "util"
|
|
local argsort = util.argsort
|
|
local clamp = util.clamp
|
|
|
|
local Snes = Base:extend()
|
|
|
|
-- NOTE: duplicated in xnes.lua!
|
|
local function make_utility(popsize, out)
|
|
local utility = out or {}
|
|
local temp = log(popsize / 2 + 1)
|
|
for i=1, popsize do utility[i] = max(0, temp - log(i)) end
|
|
local sum = 0
|
|
for _, v in ipairs(utility) do sum = sum + v end
|
|
for i, v in ipairs(utility) do utility[i] = v / sum - 1 / popsize end
|
|
return utility
|
|
end
|
|
|
|
function Snes:init(dims, popsize, learning_rate, sigma, antithetic)
|
|
-- heuristic borrowed from CMA-ES:
|
|
self.dims = dims
|
|
self.popsize = popsize or 4 + (3 * floor(log(dims)))
|
|
self.learning_rate = learning_rate or 3/5 * (3 + log(dims)) / (dims * sqrt(dims))
|
|
self.sigma = sigma or 1
|
|
self.antithetic = antithetic and true or false
|
|
|
|
if self.antithetic then self.popsize = self.popsize * 2 end
|
|
|
|
self.utility = make_utility(self.popsize)
|
|
|
|
self.mean = zeros{dims}
|
|
self.std = zeros{dims}
|
|
for i=1, self.dims do self.std[i] = self.sigma end
|
|
|
|
self.mean_adapt = 1.0
|
|
end
|
|
|
|
function Snes:params(new_mean)
|
|
if new_mean ~= nil then
|
|
assert(#self.mean == #new_mean, "new parameters have the wrong size")
|
|
for i, v in ipairs(new_mean) do self.mean[i] = v end
|
|
end
|
|
return self.mean
|
|
end
|
|
|
|
function Snes:ask_once(asked, noise)
|
|
asked = asked or zeros(self.dims)
|
|
noise = noise or {}
|
|
|
|
for i=1, self.dims do noise[i] = normal() end
|
|
noise.shape = {#noise}
|
|
|
|
for i, v in ipairs(noise) do asked[i] = self.mean[i] + self.std[i] * v end
|
|
|
|
return asked, noise
|
|
end
|
|
|
|
function Snes:ask_twice(asked0, asked1, noise0, noise1)
|
|
asked0 = asked0 or zeros(self.dims)
|
|
asked1 = asked1 or zeros(self.dims)
|
|
noise0 = noise0 or {}
|
|
noise1 = noise1 or {}
|
|
|
|
for i=1, self.dims do noise0[i] = normal() end
|
|
noise0.shape = {#noise0}
|
|
|
|
for i, v in ipairs(noise0) do
|
|
asked0[i] = self.mean[i] + self.std[i] * v
|
|
asked1[i] = self.mean[i] - self.std[i] * v
|
|
end
|
|
for i, v in ipairs(noise0) do noise1[i] = -v end
|
|
|
|
return asked0, asked1, noise0, noise1
|
|
end
|
|
|
|
-- NOTE: duplicated in xnes.lua!
|
|
function Snes:ask(asked, noise)
|
|
-- return a list of parameters for the user to score,
|
|
-- and later pass to :tell().
|
|
if asked == nil then
|
|
asked = {}
|
|
for i=1, self.popsize do asked[i] = zeros(self.dims) end
|
|
end
|
|
if noise == nil then
|
|
noise = {}
|
|
for i=1, self.popsize do noise[i] = zeros(self.dims) end
|
|
end
|
|
|
|
if self.antithetic then
|
|
for i=1, self.popsize do
|
|
self:ask_twice(asked[i+0], asked[i+1], noise[i+0], noise[i+1])
|
|
end
|
|
else
|
|
for i=1, self.popsize do
|
|
self:ask_once(asked[i], noise[i])
|
|
end
|
|
end
|
|
|
|
self.noise = noise
|
|
return asked, noise
|
|
end
|
|
|
|
function Snes:tell(scored, noise)
|
|
local noise = noise or self.noise
|
|
assert(noise, "missing noise argument")
|
|
|
|
local arg = argsort(scored, function(a, b) return a > b end)
|
|
|
|
local g_mean = zeros{self.dims}
|
|
for p=1, self.popsize do
|
|
local noise_p = noise[arg[p]]
|
|
for i, v in ipairs(g_mean) do
|
|
g_mean[i] = v + self.utility[p] * noise_p[i]
|
|
end
|
|
end
|
|
|
|
local g_std = zeros{self.dims}
|
|
for p=1, self.popsize do
|
|
local noise_p = noise[arg[p]]
|
|
for i, v in ipairs(g_std) do
|
|
local n = noise_p[i]
|
|
g_std[i] = v + self.utility[p] * (n * n - 1)
|
|
end
|
|
end
|
|
|
|
for i, v in ipairs(self.mean) do
|
|
self.mean[i] = v + self.mean_adapt * self.std[i] * g_mean[i]
|
|
end
|
|
|
|
for i, v in ipairs(self.std) do
|
|
self.std[i] = v * exp(self.learning_rate / 2 * g_std[i])
|
|
end
|
|
|
|
-- bookkeeping:
|
|
self.noise = nil
|
|
end
|
|
|
|
return {
|
|
make_utility = make_utility,
|
|
|
|
Snes = Snes,
|
|
}
|