add Lipschitz heuristic/approximation

This commit is contained in:
Connor Olding 2018-05-07 05:57:52 +02:00
parent ee066154b2
commit 5201b75509
2 changed files with 28 additions and 8 deletions

View file

@ -33,6 +33,7 @@ local common_cfg = {
-- ^ note that this now doubles the effective trials.
time_inputs = true, -- binary inputs of global frame count
ars_lips = false,
adamant = false, -- run steps through AMSgrad.
cap_time = 300,
@ -50,6 +51,7 @@ local cfg = {
epoch_top_trials = 10,
learning_rate = 1.0,
ars_lips = true,
deviation = 0.1,
weight_decay = 0.004,

View file

@ -656,11 +656,12 @@ local function learn_from_epoch()
end
print("best deltas:", top_delta_rewards)
local _, reward_dev = calc_mean_dev(top_rewards)
--print("mean, dev:", _, reward_dev)
if reward_dev == 0 then reward_dev = 1 end
for i, v in ipairs(top_rewards) do top_rewards[i] = v / reward_dev end
if not cfg.ars_lips then
local _, reward_dev = calc_mean_dev(top_rewards)
--print("mean, dev:", _, reward_dev)
if reward_dev == 0 then reward_dev = 1 end
for i, v in ipairs(top_rewards) do top_rewards[i] = v / reward_dev end
end
-- NOTE: step no longer directly incorporates learning_rate.
for i = 1, cfg.epoch_trials do
@ -668,9 +669,26 @@ local function learn_from_epoch()
local pos = top_rewards[ind + 0]
local neg = top_rewards[ind + 1]
local reward = pos - neg
local noise = trial_noise[i]
for j, v in ipairs(noise) do
step[j] = step[j] + reward * v / cfg.epoch_top_trials
if reward ~= 0 then
local noise = trial_noise[i]
if cfg.ars_lips then
local _, dev = calc_mean_dev(noise)
local c0 = neg - current_cost
local c1 = pos - current_cost
local l0 = abs(3 * c1 + c0)
local l1 = abs(c1 + 3 * c0)
local lips = max(l0, l1) / (2 * dev)
--reward = pos / lips - neg / lips
local old_reward = reward
reward = reward / lips
reward = reward / cfg.deviation -- FIXME: hack?
--print(("trial %i reward: %.0f -> %.5f"):format(i, old_reward, reward))
end
for j, v in ipairs(noise) do
step[j] = step[j] + reward * v / cfg.epoch_top_trials
end
end
end