add normalizing and no-biasing features to DenseBroadcast

This commit is contained in:
Connor Olding 2018-06-24 12:18:30 +02:00
parent f52fabc549
commit 18e4376aae

27
nn.lua
View file

@ -600,13 +600,21 @@ function Dense:forward(X)
return Y
end
function DenseBroadcast:init(dim)
function DenseBroadcast:init(dim, norm_in, biasing)
-- same as Dense but applies the same to every m of (m, n).
Layer.init(self, "DenseBroadcast")
assert(type(dim) == "number")
self.dim = dim
self.coeffs = self:_new_weights(init_he_normal) -- should be normal, but...
self.biases = self:_new_weights(init_zeros)
self.norm_in = norm_in and true or false
if self.norm_in then
self.coeffs = self:_new_weights(init_normal)
else
self.coeffs = self:_new_weights(init_he_normal)
end
if self.biasing then
self.biases = self:_new_weights(init_zeros)
end
self.c = 1.0
end
function DenseBroadcast:make_shape(parent)
@ -614,7 +622,12 @@ function DenseBroadcast:make_shape(parent)
assert(#self.shape_in == 2)
self.shape_out = {self.shape_in[1], self.dim}
self.coeffs.shape = {self.shape_in[#self.shape_in], self.dim}
self.biases.shape = {1, self.dim}
if self.biasing then
self.biases.shape = {1, self.dim}
end
if self.norm_in then
self.c = 1 / sqrt(prod(self.shape_in))
end
end
function DenseBroadcast:forward(X)
@ -623,7 +636,11 @@ function DenseBroadcast:forward(X)
local Y = self.cache
dot(X, self.coeffs, 3, 1, Y)
for i, v in ipairs(Y) do Y[i] = v + self.biases[(i - 1) % self.dim + 1] end
if self.biasing then
for i, v in ipairs(Y) do Y[i] = self.c * v + self.biases[(i - 1) % self.dim + 1] end
elseif self.norm_in then
for i, v in ipairs(Y) do Y[i] = self.c * v end
end
checkshape(Y, self.shape_out)
return Y