smbot/ars.lua

184 lines
5 KiB
Lua
Raw Normal View History

-- Augmented Random Search
-- https://arxiv.org/abs/1803.07055
-- with some tweaks (lips) by myself.
local abs = math.abs
local floor = math.floor
local ipairs = ipairs
local max = math.max
local print = print
local Base = require "Base"
local nn = require "nn"
local normal = nn.normal
local prod = nn.prod
local zeros = nn.zeros
local util = require "util"
local argsort = util.argsort
local calc_mean_dev = util.calc_mean_dev
local Ars = Base:extend()
local function collect_best_indices(scored, top, antithetic)
-- select one (the best) reward of each pos/neg pair.
local best_rewards
if antithetic then
best_rewards = {}
for i = 1, #scored, 2 do
local ind = floor(i / 2) + 1
local pos = scored[i + 0]
local neg = scored[i + 1]
best_rewards[ind] = max(pos, neg)
end
else
best_rewards = scored
end
local indices = argsort(best_rewards, function(a, b) return a > b end)
for i = top + 1, #best_rewards do indices[i] = nil end
return indices
end
local function kinda_lipschitz(dir, pos, neg, mid)
local _, dev = calc_mean_dev(dir)
local c0 = neg - mid
local c1 = pos - mid
local l0 = abs(3 * c1 + c0)
local l1 = abs(c1 + 3 * c0)
return max(l0, l1) / (2 * dev)
end
function Ars:init(dims, popsize, poptop, learning_rate, sigma, antithetic)
self.dims = dims
self.popsize = popsize or 4 + (3 * floor(log(dims)))
self.learning_rate = learning_rate or 3/5 * (3 + log(dims)) / (dims * sqrt(dims))
self.sigma = sigma or 1
self.antithetic = antithetic and true or false
self.poptop = poptop or popsize
assert(self.poptop <= popsize)
if self.antithetic then self.popsize = self.popsize * 2 end
self._params = nn.zeros(self.dims)
self.evals = 0
end
function Ars:params(new_params)
if new_params ~= nil then
assert(#self._params == #new_params, "new parameters have the wrong size")
for i, v in ipairs(new_params) do self._params[i] = v end
end
return self._params
end
function Ars:ask(graycode)
local asked = {}
local noise = {}
for i = 1, self.popsize do
local asking = zeros(self.dims)
local noisy = zeros(self.dims)
asked[i] = asking
2018-06-12 11:51:08 -07:00
noise[i] = noisy
if self.antithetic and i % 2 == 0 then
2018-06-12 11:51:08 -07:00
local old_noisy = noise[i - 1]
for j, v in ipairs(old_noisy) do
noisy[j] = -v
end
else
if graycode ~= nil then
for j = 1, self.dims do
noisy[j] = exp(-precision * nn.uniform())
end
for j = 1, self.dims do
noisy[j] = nn.uniform() < 0.5 and noisy[j] or -noisy[j]
end
else
for j = 1, self.dims do
noisy[j] = self.sigma * nn.normal()
end
end
end
2018-06-12 11:51:08 -07:00
for j, v in ipairs(self._params) do
asking[j] = v + noisy[j]
end
end
self.noise = noise
return asked, noise
end
function Ars:tell(scored, unperturbed_score)
local use_lips = unperturbed_score ~= nil and self.antithetic
self.evals = self.evals + #scored
if use_lips then self.evals = self.evals + 1 end
-- FIXME: the non-antithetic case seems to be broken.
local indices = collect_best_indices(scored, self.poptop, self.antithetic)
local top_rewards = {}
for i = 1, #scored do top_rewards[i] = 0 end
for _, ind in ipairs(indices) do
local sind = (ind - 1) * 2 + 1
top_rewards[sind + 0] = scored[sind + 0]
top_rewards[sind + 1] = scored[sind + 1]
end
local step = nn.zeros(self.dims)
local _, reward_dev = calc_mean_dev(top_rewards)
if reward_dev == 0 then reward_dev = 1 end
if self.antithetic then
for i = 1, floor(self.popsize / 2) do
local ind = (i - 1) * 2 + 1
local pos = top_rewards[ind + 0]
local neg = top_rewards[ind + 1]
local reward = pos - neg
if reward ~= 0 then
local noisy = self.noise[i]
if use_lips then
local lips = kinda_lipschitz(noisy, pos, neg, unperturbed_score)
reward = reward / lips / self.sigma
else
reward = reward / reward_dev
end
for j, v in ipairs(noisy) do
step[j] = step[j] + reward * v / self.poptop
end
end
end
else
for i = 1, self.popsize do
local reward = top_rewards[i] / reward_dev
if reward ~= 0 then
local noisy = self.noise[i]
for j, v in ipairs(noisy) do
step[j] = step[j] + reward * v / self.poptop
end
end
end
end
for i, v in ipairs(self._params) do
self._params[i] = v + self.learning_rate * step[i]
end
2018-06-09 09:27:13 -07:00
self.noise = nil
return step
end
return {
Ars = Ars,
}