This commit is contained in:
Connor Olding 2017-02-08 22:43:41 -08:00
parent 8fc1c198b4
commit 745e012a7a

View file

@ -1,5 +1,8 @@
#!/usr/bin/env python3
# external packages required for full functionality:
# numpy scipy h5py sklearn dotmap
import numpy as np
# ugly shorthand:
nf = np.float32
@ -50,6 +53,13 @@ class SquaredHalved(Loss):
def df(self, r):
return r
class Absolute(Loss):
def f(self, r):
return np.abs(r)
def df(self, r):
return np.sign(r)
class SomethingElse(Loss):
# generalizes Absolute and SquaredHalved (|dx| = 1)
# plot: https://www.desmos.com/calculator/fagjg9vuz7
@ -650,6 +660,14 @@ class NoisyRitual(Ritual):
self.gradient_noise = nf(gradient_noise)
super().__init__(learner, loss, mloss)
def learn(self, inputs, outputs):
# this is pretty crude
s = self.input_noise
noisy_inputs = inputs + np.random.normal(0, s, size=inputs.shape)
s = self.output_noise
noisy_outputs = outputs + np.random.normal(0, s, size=outputs.shape)
return super().learn(noisy_inputs, noisy_outputs)
def update(self):
# gradient noise paper: https://arxiv.org/abs/1511.06807
if self.gradient_noise > 0:
@ -867,6 +885,74 @@ def multiresnet(x, width, depth, block=2, multi=1,
inits = dict(he_normal=init_he_normal, he_uniform=init_he_uniform)
activations = dict(sigmoid=Sigmoid, tanh=Tanh, relu=Relu, elu=Elu, gelu=GeluApprox)
def normalize_data(data, mean=None, std=None):
# in-place
if mean is None or std is None:
mean = np.mean(data, axis=0)
std = np.std(data, axis=0)
# TODO: construct function call string for copy-paste convenience
print('mean:', mean)
print('std: ', std)
import sys
sys.exit(1)
data -= mean
data /= std
def toy_data(train_samples, valid_samples, problem=2):
total_samples = train_samples + valid_samples
if problem == 1:
from sklearn.datasets import make_friedman1
inputs, outputs = make_friedman1(total_samples)
outputs = np.expand_dims(outputs, -1)
normalize_data(inputs,
0.5,
1/np.sqrt(12))
normalize_data(outputs,
14.4,
4.9)
elif problem == 2:
from sklearn.datasets import make_friedman2
inputs, outputs = make_friedman2(total_samples)
outputs = np.expand_dims(outputs, -1)
normalize_data(inputs,
[5.00e+01, 9.45e+02, 5.01e-01, 5.98e+00],
[2.89e+01, 4.72e+02, 2.89e-01, 2.87e+00])
normalize_data(outputs,
[482],
[380])
elif problem == 3:
from sklearn.datasets import make_friedman3
inputs, outputs = make_friedman3(total_samples)
outputs = np.expand_dims(outputs, -1)
normalize_data(inputs,
[4.98e+01, 9.45e+02, 4.99e-01, 6.02e+00],
[2.88e+01, 4.73e+02, 2.90e-01, 2.87e+00])
normalize_data(outputs,
[1.32327931],
[0.31776295])
else:
raise Exception("unknown toy data set", problem)
# split off a validation set
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
valid_inputs = inputs[indices][-valid_samples:]
valid_outputs = outputs[indices][-valid_samples:]
inputs = inputs[indices][:-valid_samples]
outputs = outputs[indices][:-valid_samples]
return (inputs, outputs), (valid_inputs, valid_outputs)
def run(program, args=[]):
import sys
lament = lambda *args, **kwargs: print(*args, file=sys.stderr, **kwargs)
@ -894,54 +980,61 @@ def run(program, args=[]):
optim = 'adam',
nesterov = False, # only used with SGD or Adam
momentum = 0.50, # only used with SGD
batch_size = 64,
# learning parameters
learner = 'sgdr',
learn = 1e-2,
learn_halve_every = 16, # unused with SGDR
learn_restart_advance = 16, # unused with SGDR
epochs = 12,
epochs = 24,
restarts = 2,
restart_decay = 1, # only used with SGDR
restart_decay = 0.25, # only used with SGDR
expando = lambda i: i + 1,
# misc
batch_size = 64,
init = 'he_normal',
loss = 'msee',
loss = 'mse',
mloss = 'mse',
restart_optim = False, # restarts also reset internal state of optimizer
unsafe = True, # aka gotta go fast mode
train_compare = 0.0000508,
valid_compare = 0.0000678,
ritual = 'default',
restart_optim = False, # restarts also reset internal state of optimizer
problem = 3,
# best results for ~10,000 parameters
# (keep these paired; update both at the same time!)
train_compare = 1.854613e-05,
valid_compare = 1.623881e-05,
unsafe = True, # aka gotta go fast mode
)
for k in ['parallel_style', 'optim', 'learner', 'ritual']:
for k in ['parallel_style', 'activation', 'optim', 'learner', 'init', 'loss', 'mloss', 'ritual']:
config[k] = config[k].lower()
#config.pprint()
config.pprint()
# toy CIE-2000 data
from ml.cie_mlp_data import rgbcompare, input_samples, output_samples, \
inputs, outputs, valid_inputs, valid_outputs, \
x_scale, y_scale
# toy data
# (our model is probably complete overkill for this, so TODO: better data)
(inputs, outputs), (valid_inputs, valid_outputs) = \
toy_data(2**14, 2**11, problem=config.problem)
input_features = inputs.shape[-1]
output_features = outputs.shape[-1]
# Our Test Model
init = inits[config.init]
activation = activations[config.activation]
x = Input(shape=(input_samples,))
x = Input(shape=(input_features,))
y = x
y = multiresnet(y,
config.res_width, config.res_depth,
config.res_block, config.res_multi,
activation=activation, init=init,
style=config.parallel_style)
if y.output_shape[0] != output_samples:
y = y.feed(Dense(output_samples, init))
if y.output_shape[0] != output_features:
y = y.feed(Dense(output_features, init))
model = Model(x, y, unsafe=config.unsafe)
@ -991,7 +1084,7 @@ def run(program, args=[]):
restart_decay=config.restart_decay, restarts=config.restarts,
callback=rscb, expando=expando)
# final learning rate isn't of interest here; it's gonna be close to 0.
log('total epochs:', learner.epochs)
log('total epochs', learner.epochs)
elif config.learner == 'anneal':
learner = AnnealingLearner(optim, epochs=config.epochs, rate=config.learn,
halve_every=config.learn_halve_every)
@ -1016,6 +1109,8 @@ def run(program, args=[]):
return Squared()
elif maybe_name == 'mshe': # mushy
return SquaredHalved()
elif maybe_name == 'mae':
return Absolute()
elif maybe_name == 'msee':
return SomethingElse()
raise Exception('unknown objective', maybe_name)
@ -1029,7 +1124,8 @@ def run(program, args=[]):
ritual = StochMRitual(learner=learner, loss=loss, mloss=mloss)
elif config.ritual == 'noisy':
ritual = NoisyRitual(learner=learner, loss=loss, mloss=mloss,
gradient_noise=0.01)
input_noise=1e-1, output_noise=1e-2,
gradient_noise=2e-7)
else:
raise Exception('unknown ritual', config.ritual)
@ -1044,16 +1140,18 @@ def run(program, args=[]):
predicted = model.forward(inputs)
residual = predicted - outputs
err = ritual.measure(residual)
log(name + " loss", "{:11.7f}".format(err))
log(name + " loss", "{:12.6e}".format(err))
# TODO: print logarithmic difference as it might be more meaningful
# (fewer results stuck around -99%)
if comparison:
log("improvement", "{:+7.2f}%".format((comparison / err - 1) * 100))
return err
train_err = print_error("train",
inputs / x_scale, outputs / y_scale,
inputs, outputs,
config.train_compare)
valid_err = print_error("valid",
valid_inputs / x_scale, valid_outputs / y_scale,
valid_inputs, valid_outputs,
config.valid_compare)
train_losses.append(train_err)
valid_losses.append(valid_err)
@ -1066,8 +1164,8 @@ def run(program, args=[]):
while learner.next():
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
shuffled_inputs = inputs[indices] / x_scale
shuffled_outputs = outputs[indices] / y_scale
shuffled_inputs = inputs[indices]
shuffled_outputs = outputs[indices]
avg_loss, losses = ritual.train_batched(
shuffled_inputs, shuffled_outputs,
@ -1077,7 +1175,7 @@ def run(program, args=[]):
#log("learning rate", "{:10.8f}".format(learner.rate))
#log("average loss", "{:11.7f}".format(avg_loss))
fmt = "epoch {:4.0f}, rate {:10.8f}, loss {:11.7f}"
fmt = "epoch {:4.0f}, rate {:10.8f}, loss {:12.6e}"
log("info", fmt.format(learner.epoch + 1, learner.rate, avg_loss))
measure_error()
@ -1087,15 +1185,7 @@ def run(program, args=[]):
model.save_weights(config.fn_save, overwrite=True)
# Evaluation
# this is just an example/test of how to predict a single output;
# it doesn't measure the quality of the network or anything.
a = (192, 128, 64)
b = (64, 128, 192)
X = np.expand_dims(np.hstack((a, b)), 0) / x_scale
P = model.forward(X) * y_scale
log("truth", rgbcompare(a, b))
log("network", np.squeeze(P))
# TODO: write this portion again
if config.log_fn is not None:
np.savez_compressed(config.log_fn,