Merge remote-tracking branch 'response/master'
This commit is contained in:
commit
8ce28c4bf4
1 changed files with 26 additions and 0 deletions
26
response.txt
Normal file
26
response.txt
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
if you have a transfer function like,
|
||||||
|
|
||||||
|
b2·s² + b1·s + b0
|
||||||
|
H(s) = ———————————————————
|
||||||
|
a2·s² + a1·s + a0
|
||||||
|
|
||||||
|
whereas s would be (1 - z⁻¹)∕(1 + z⁻¹)∕e^(j·ω) in the bilinear transform,
|
||||||
|
you can find its magnitude response with this equation:
|
||||||
|
|
||||||
|
(b2·x)² - (2·b2·b0 - b1²)·W·x·y + (b0·W·y)²
|
||||||
|
|H(j·ω)|² = —————————————————————————————————————————————
|
||||||
|
(a2·x)² - (2·a2·a0 - a1²)·W·x·y + (a0·W·y)²
|
||||||
|
|
||||||
|
(analog) x = ω²
|
||||||
|
y = 1
|
||||||
|
W = ω0²
|
||||||
|
|
||||||
|
(digital) x = sin(ω∕2)²
|
||||||
|
y = cos(ω∕2)²
|
||||||
|
W = tan(ω0∕2)²
|
||||||
|
|
||||||
|
whereas ω is the physical frequency in rads/sec
|
||||||
|
ω0 is the center frequency in rads/sec
|
||||||
|
|
||||||
|
and the phase? maybe some other time
|
||||||
|
note: I'm no math genius and there's probably an error in here
|
Loading…
Reference in a new issue