Merge remote-tracking branch 'atttt/master'

This commit is contained in:
Connor Olding 2019-03-11 06:50:26 +01:00
commit 61188f00da
3 changed files with 480 additions and 0 deletions

280
atttt.py Executable file
View file

@ -0,0 +1,280 @@
#!/usr/bin/env python3
import sys
import numpy as np
from misc import *
from basic import Brain
def align(x, alignment):
return (x + alignment // 2) // alignment * alignment
def uniq_rows(a, return_index=False, return_inverse=False, return_counts=False):
# via http://stackoverflow.com/a/16973510
# black magic wrapper around np.unique
return_any = return_index or return_inverse or return_counts
if not return_any:
np.unique(a.view(np.dtype((np.void, a.dtype.itemsize * a.shape[1])))).view(a.dtype).reshape(-1, a.shape[1])
else:
void_dtype = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
ret = np.unique(a.view(void_dtype), return_index, return_inverse, return_counts)
return (ret[0].view(a.dtype).reshape(-1, a.shape[1]),) + ret[1:]
class ATTTT():
def __init__(self, brain):
self.brain = brain
self.score = self._score
def _score(self, reply, maxn):
if len(reply) > maxn:
return -999999999
#return len(reply)
return 1
def reply(self, item=None, maxn=1000, include_scores=False, attempts=None):
if attempts == None:
# just guess some value that'll take roughly the same amount of time
attempts = int(2**12 / self.brain.order)
lament('attempts:', attempts)
replies = []
for i in range(attempts):
reply = "".join(self.brain.reply(item=item, maxn=maxn+1))
replies += [(reply, self.score(reply, maxn))]
result = sorted(replies, key=lambda t: t[1], reverse=True)[0]
if include_scores:
return result
else:
return result[0]
class PatternBrain(Brain):
def __init__(self, *args, **kwargs):
super().__init__(*args, padding='~', **kwargs)
self.tokens = []
def helper(self, v):
return (v,)
def resolve_tokens(self, tokens):
# positive values are just unicode characters
if isinstance(tokens, int) or isinstance(tokens, np.int32):
return tokens < 0 and self.tokens[tokens] or chr(tokens)
else:
return [o < 0 and self.tokens[o] or chr(o) for o in tokens]
def new_token(self, value):
new_id = -1 - len(self.tokens)
self.tokens[new_id] = value
return new_id
@staticmethod
def prepare_items(items, pad=True):
new_items = []
for item in items:
item = item.strip('\n')
# assert that the number of sequences is a multiple of 2
# otherwise we can't .reshape() it to be two-dimensional later on
next_biggest = align(len(item) + 1, 2)
# initialize with padding (-1)
new_item = -np.ones(next_biggest, dtype=np.int32)
for i, c in enumerate(item):
new_item[i] = ord(c)
new_items.append(new_item)
# add an extra padding item to the head and tail
# to make it easier to convert from sequences back to items later on
if pad:
pad = -np.ones(1, dtype=np.int32)
new_items.insert(0, pad)
new_items.append(pad)
return np.concatenate(new_items)
def stat_tokens(self, all_items, skip_normal=False):
unique, counts = np.unique(all_items, return_counts=True)
count_order = np.argsort(counts)[::-1]
counts_descending = counts[count_order]
unique_descending = unique[count_order]
for i, token_id in enumerate(unique_descending):
if token_id == -1:
continue
if skip_normal and token_id >= 0:
continue
token = self.resolve_tokens(token_id)
lament("token id {:5} occurs {:8} times: \"{}\"".format(
token_id, counts_descending[i], token))
lament("total tokens: {:5}".format(i + 1))
def merge_all(self, all_items, merges, min_count=2):
# set up a 2d array to step through at half the row length;
# this means double redundancy; to acquire all the sequences.
# we could instead .roll it later to get the other half.
# that would require less memory, but memory isn't really a concern.
sequences = all_items.repeat(2)[1:-1].reshape(-1, 2).copy()
for i in range(merges):
invalid = np.any(sequences == -1, axis=1)
valid_sequences = np.delete(sequences, np.where(invalid), axis=0)
unique, counts = uniq_rows(valid_sequences, return_counts=True)
count = counts.max()
most_common = (None, 1)
if count > most_common[1]:
seq = unique[counts == count][0]
most_common = (seq, count)
if most_common[0] is None or most_common[1] <= 1 or most_common[1] < min_count:
lament('no more valid sequences')
break
token_value = "".join(self.resolve_tokens(most_common[0]))
new_id = self.new_token(token_value)
# replace the most common two-token sequence
# with one token to represent both
found = np.all(sequences == most_common[0], axis=1)
before = np.roll(found, -1)
after = np.roll(found, 1)
# don't wrap around truth values
before[-1] = False
after[0] = False
# remove the "found" sequences
# and update the previous/next,
# not unlike a doubly-linked list.
befores = sequences[before].T.copy()
befores[1] = new_id
sequences[before] = befores.T
afters = sequences[after].T.copy()
afters[0] = new_id
sequences[after] = afters.T
here = np.where(found)
sequences = np.delete(sequences, here, axis=0)
lament("new token id {:5} occurs {:8} times: \"{}\"".format(
new_id, len(here[0]), self.tokens[new_id]))
# reconstruct all_items out of the sequences
all_items = sequences.reshape(-1)[::2][1:].copy()
return all_items
def learn_all(self, items, merges=0, stat=True):
min_count = 2 # minimum number of occurences to stop creating tokens at
if merges < 0:
min_count = -merges
merges = 65536 # arbitrary sanity value
# we'll use numpy matrices so this isn't nearly as disgustingly slow
self.tokens = {-1: ''} # default with an empty padding token
all_items = self.prepare_items(items)
if merges > 0:
all_items = self.merge_all(all_items, merges, min_count)
# begin the actual learning
self.reset()
np_item = []
for i in all_items:
if i == -1:
if len(np_item) == 0:
continue
item = tuple()
for i in np_item:
if i < 0:
assert(i != -1)
item += self.helper(self.tokens[i])
else:
item += self.helper(chr(i))
#die(np_item, item)
self.learn(item)
np_item = []
else:
np_item.append(i)
self.update()
if merges != 0 and stat:
self.stat_tokens(all_items)
def run(pname, args, env):
if not 1 <= len(args) <= 2:
lament("usage: {} {{input file}} [savestate file]".format(pname))
return 1
args = dict(enumerate(args)) # just for the .get() method
fn = args[0]
state_fn = args.get(1, None)
# the number of lines to output.
count = int(env.get('COUNT', '8'))
# learn and sample using this number of sequential tokens.
order = int(env.get('ORDER', '2'))
# how experimental to be with sampling.
# probably doesn't work properly.
temperature = float(env.get('TEMPERATURE', '0.5'))
# the max character length of output. (not guaranteed)
maxn = int(env.get('MAXN', '240'))
# attempts to maximize scoring
attempts = int(env.get('ATTEMPTS', '-1'))
# if positive, maximum number of tokens to merge.
# if negative, minimum number of occurences to stop at.
merges = int(env.get('MERGES', '0'))
if attempts <= 0:
attempts = None
brain = PatternBrain(order=order, temperature=temperature)
tool = ATTTT(brain)
if state_fn:
lament('# loading')
try:
brain.load(state_fn, raw=False)
except FileNotFoundError:
lament('# no file to load. skipping')
pass
if brain and brain.new:
lament('# learning')
lines = open(fn).readlines()
brain.learn_all(lines, merges)
if brain and brain.new and state_fn:
lament('# saving')
brain.save(state_fn, raw=False)
lament('# replying')
for i in range(count):
#reply = tool.reply(maxn=maxn, raw=True, attempts=attempts)
#print('{:6.1f}\t{}'.format(reply[1], reply[0]))
print(tool.reply(maxn=maxn, attempts=attempts))
return 0
if __name__ == '__main__':
import sys
import os
pname = len(sys.argv) > 0 and sys.argv[0] or ''
args = len(sys.argv) > 1 and sys.argv[1:] or []
sys.exit(run(pname, args, os.environ))

189
basic.py Executable file
View file

@ -0,0 +1,189 @@
import math
import numpy as np
from misc import *
def normalize(counter):
v = counter.values()
s = float(sum(v))
m = float(max(v))
del v
return [(c, cnt/s, cnt/m) for c, cnt in counter.items()]
def normalize_sorted(counter):
# if the elements were unsorted,
# we couldn't use our lazy method (subtraction) of selecting tokens
# and temperature would correspond to arbitrary tokens
# instead of more/less common tokens.
return sorted(normalize(counter), key=lambda t: t[1], reverse=True)
# http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139
class Brain:
def __init__(self, padding, order=1, temperature=0.5):
self.order = order
self.temperature = temperature
self.padding = padding
self.reset()
def reset(self):
import collections as cool
# unnormalized
self._machine = cool.defaultdict(cool.Counter)
# normalized
self.machine = None
self.type = None
self.dirty = False
self.new = True
@property
def temperature(self):
return self._temperature
@temperature.setter
def temperature(self, value):
assert(0 < value < 1)
self._temperature = value
a = 1 - value * 2
# http://www.mathopenref.com/graphfunctions.html?fx=(a*x-x)/(2*a*x-a-1)&sg=f&sh=f&xh=1&xl=0&yh=1&yl=0&ah=1&al=-1&a=0.5
tweak = lambda x: (a * x - x) / (2 * a * x - a - 1)
self.random = lambda n: 1 - tweak(np.random.random(n))
def learn_all(self, items):
for item in items:
self.learn(item)
self.update()
def learn(self, item):
assert(self.padding)
if self.type is None and item is not None:
self.type = type(item)
if type(item) is not self.type:
raise Exception("that's no good")
if self.type == type("string"):
item = item.strip()
if len(item) == 0:
return
pad = self.helper(self.padding) * self.order
item = pad + item + pad
stop = len(item) - self.order
if stop > 0:
for i in range(stop):
history, newitem = item[i:i+self.order], item[i+self.order]
self._machine[history][newitem] += 1
self.dirty = True
def update(self):
if self.dirty and self._machine:
self.machine = {hist: normalize_sorted(items)
for hist, items in self._machine.items()}
self.dirty = False
def next(self, history):
history = history[-self.order:]
dist = self.machine.get(history, None)
if dist == None:
lament('warning: no value: {}'.format(history))
return None
x = self.random(1)
for c, cs, cm in dist:
x = x - cs
if x <= 0:
return c
# for overriding in subclasses
# in case the input tokens aren't strings (e.g. tuples)
def helper(self, v):
return v
def reply(self, item=None, maxn=1000):
assert(self.padding)
self.update()
history = self.helper(self.padding) * self.order
out = []
for i in range(maxn):
c = self.next(history)
if c.find(self.padding) != -1:
out.append(c.replace(self.padding, ''))
break
history = history[-self.order:] + self.helper(c)
out.append(c)
return out
def load(self, fn, raw=True):
import pickle
if type(fn) == type(''):
f = open(fn, 'rb')
else:
f = fn
d = pickle.load(f)
if d['order'] != self.order:
lament('warning: order mismatch. cancelling load.')
return
self.order = d['order']
if raw:
if not d.get('_machine'):
lament('warning: no _machine. cancelling load.')
return
self._machine = d['_machine']
self.dirty = True
self.update()
else:
if not d.get('machine'):
lament('warning: no machine. cancelling load.')
return
self.machine = d['machine']
self.new = False
if f != fn:
f.close()
def save(self, fn, raw=True):
import pickle
if type(fn) == type(''):
f = open(fn, 'wb')
else:
f = fn
d = {}
d['order'] = self.order
if raw:
d['_machine'] = self._machine
else:
d['machine'] = self.machine
pickle.dump(d, f)
if f != fn:
f.close()

11
misc.py Executable file
View file

@ -0,0 +1,11 @@
import sys
lament = lambda *args, **kwargs: print(*args, file=sys.stderr, **kwargs)
def die(*args, **kwargs):
# just for ad-hoc debugging really
lament(*args, **kwargs)
sys.exit(1)
__all__ = [o for o in locals() if type(o) != 'module' and not o.startswith('_')]