dsp/lib/planes.py
2017-09-21 04:04:22 -07:00

97 lines
2.5 KiB
Python

from . import tau
import numpy as np
# implements the modified bilinear transform:
# s <- 1/tan(w0/2)*(1 - z^-1)/(1 + z^-1)
# this requires the s-plane coefficients to be frequency-normalized,
# and the center frequency to be passed as a transformation parameter.
def zcgen_py(n, d):
zcs = np.zeros(d + 1)
# expanded from the equation in zcgen_sym
zcs[0] = 1
for _ in range(n):
for i in range(d, 0, -1):
zcs[i] -= zcs[i - 1]
for _ in range(d - n):
for i in range(d, 0, -1):
zcs[i] += zcs[i - 1]
return zcs
def zcgen_sym(n, d):
import sympy as sym
z = sym.symbols('z')
expr = sym.expand((1 - z**-1)**n*(1 + z**-1)**(d - n))
coeffs = expr.equals(1) and [1] or expr.as_poly().all_coeffs()
return coeffs[::-1]
def s2z_two(b, a, fc, srate, gain=1):
"""
converts s-plane coefficients to z-plane for digital usage.
hard-coded for 3 coefficients.
"""
if len(b) == 2:
b = (b[0], b[1], 0)
if len(a) == 2:
a = (a[0], a[1], 0)
w0 = tau*fc/srate
cw = np.cos(w0)
sw = np.sin(w0)
zb = np.array((
(b[2]*(1 - cw) + b[0]*(1 + cw) + b[1]*sw),
(b[2]*(1 - cw) - b[0]*(1 + cw)) * 2,
(b[2]*(1 - cw) + b[0]*(1 + cw) - b[1]*sw),
))
za = np.array((
(a[2]*(1 - cw) + a[0]*(1 + cw) + a[1]*sw),
(a[2]*(1 - cw) - a[0]*(1 + cw)) * 2,
(a[2]*(1 - cw) + a[0]*(1 + cw) - a[1]*sw),
))
return zb*gain, za
def s2z1(w0, s, d):
"""
s: array of s-plane coefficients (num OR den, not both)
d: degree (array length - 1)
returns output array of size d + 1
"""
y = np.zeros(d + 1)
sw = np.sin(w0)
cw = np.cos(w0)
for n in range(d + 1):
zcs = zcgen(d - n, d)
trig = sw**n/(cw + 1)**(n - 1)
for i in range(d + 1):
y[i] += trig*zcs[i]*s[n]
return y
def s2z_any(b, a, fc, srate, gain=1, d=-1):
"""
converts s-plane coefficients to z-plane for digital usage.
supports any number of coefficients; b or a will be padded accordingly.
additional padding can be specified with d.
"""
cs = max(len(b), len(a), d + 1)
sb = np.zeros(cs)
sa = np.zeros(cs)
sb[:len(b)] = b
sa[:len(a)] = a
w0 = tau*fc/srate
zb = s2z1(w0, sb, cs - 1)
za = s2z1(w0, sa, cs - 1)
return zb*gain, za
# set our preference. zcgen_py is 1000+ times faster than zcgen_sym.
zcgen = zcgen_py
# s2z_any is only ~2.4 times slower than s2z_two
# and allows for filters of any degree.
s2z = s2z_any