2015-10-18 23:06:39 -07:00
|
|
|
from . import tau
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
2017-09-21 04:04:22 -07:00
|
|
|
|
2015-10-23 04:04:28 -07:00
|
|
|
# implements the modified bilinear transform:
|
|
|
|
# s <- 1/tan(w0/2)*(1 - z^-1)/(1 + z^-1)
|
|
|
|
# this requires the s-plane coefficients to be frequency-normalized,
|
|
|
|
# and the center frequency to be passed as a transformation parameter.
|
|
|
|
|
2015-10-18 23:06:39 -07:00
|
|
|
def zcgen_py(n, d):
|
|
|
|
zcs = np.zeros(d + 1)
|
2015-10-18 23:33:46 -07:00
|
|
|
|
|
|
|
# expanded from the equation in zcgen_sym
|
2015-10-18 23:06:39 -07:00
|
|
|
zcs[0] = 1
|
|
|
|
for _ in range(n):
|
|
|
|
for i in range(d, 0, -1):
|
|
|
|
zcs[i] -= zcs[i - 1]
|
|
|
|
for _ in range(d - n):
|
|
|
|
for i in range(d, 0, -1):
|
|
|
|
zcs[i] += zcs[i - 1]
|
|
|
|
return zcs
|
|
|
|
|
2017-09-21 04:04:22 -07:00
|
|
|
|
2015-10-18 23:06:39 -07:00
|
|
|
def zcgen_sym(n, d):
|
2017-09-07 04:04:26 -07:00
|
|
|
import sympy as sym
|
2015-10-18 23:06:39 -07:00
|
|
|
z = sym.symbols('z')
|
|
|
|
expr = sym.expand((1 - z**-1)**n*(1 + z**-1)**(d - n))
|
|
|
|
coeffs = expr.equals(1) and [1] or expr.as_poly().all_coeffs()
|
|
|
|
return coeffs[::-1]
|
|
|
|
|
2017-09-21 04:04:22 -07:00
|
|
|
|
2015-10-18 23:33:46 -07:00
|
|
|
def s2z_two(b, a, fc, srate, gain=1):
|
2015-10-18 23:06:39 -07:00
|
|
|
"""
|
|
|
|
converts s-plane coefficients to z-plane for digital usage.
|
|
|
|
hard-coded for 3 coefficients.
|
|
|
|
"""
|
2015-10-22 04:04:30 -07:00
|
|
|
if len(b) == 2:
|
2015-10-18 23:06:39 -07:00
|
|
|
b = (b[0], b[1], 0)
|
2015-10-22 04:04:30 -07:00
|
|
|
if len(a) == 2:
|
2015-10-18 23:06:39 -07:00
|
|
|
a = (a[0], a[1], 0)
|
|
|
|
w0 = tau*fc/srate
|
|
|
|
cw = np.cos(w0)
|
|
|
|
sw = np.sin(w0)
|
|
|
|
zb = np.array((
|
2017-09-21 04:04:22 -07:00
|
|
|
(b[2]*(1 - cw) + b[0]*(1 + cw) + b[1]*sw),
|
|
|
|
(b[2]*(1 - cw) - b[0]*(1 + cw)) * 2,
|
|
|
|
(b[2]*(1 - cw) + b[0]*(1 + cw) - b[1]*sw),
|
2015-10-18 23:06:39 -07:00
|
|
|
))
|
|
|
|
za = np.array((
|
2017-09-21 04:04:22 -07:00
|
|
|
(a[2]*(1 - cw) + a[0]*(1 + cw) + a[1]*sw),
|
|
|
|
(a[2]*(1 - cw) - a[0]*(1 + cw)) * 2,
|
|
|
|
(a[2]*(1 - cw) + a[0]*(1 + cw) - a[1]*sw),
|
2015-10-18 23:06:39 -07:00
|
|
|
))
|
|
|
|
return zb*gain, za
|
|
|
|
|
2017-09-21 04:04:22 -07:00
|
|
|
|
2015-10-18 23:06:39 -07:00
|
|
|
def s2z1(w0, s, d):
|
|
|
|
"""
|
|
|
|
s: array of s-plane coefficients (num OR den, not both)
|
|
|
|
d: degree (array length - 1)
|
|
|
|
returns output array of size d + 1
|
|
|
|
"""
|
|
|
|
y = np.zeros(d + 1)
|
|
|
|
sw = np.sin(w0)
|
|
|
|
cw = np.cos(w0)
|
|
|
|
for n in range(d + 1):
|
|
|
|
zcs = zcgen(d - n, d)
|
|
|
|
trig = sw**n/(cw + 1)**(n - 1)
|
|
|
|
for i in range(d + 1):
|
|
|
|
y[i] += trig*zcs[i]*s[n]
|
|
|
|
return y
|
|
|
|
|
2017-09-21 04:04:22 -07:00
|
|
|
|
2015-10-18 23:06:39 -07:00
|
|
|
def s2z_any(b, a, fc, srate, gain=1, d=-1):
|
|
|
|
"""
|
|
|
|
converts s-plane coefficients to z-plane for digital usage.
|
|
|
|
supports any number of coefficients; b or a will be padded accordingly.
|
|
|
|
additional padding can be specified with d.
|
|
|
|
"""
|
|
|
|
cs = max(len(b), len(a), d + 1)
|
|
|
|
sb = np.zeros(cs)
|
|
|
|
sa = np.zeros(cs)
|
|
|
|
sb[:len(b)] = b
|
|
|
|
sa[:len(a)] = a
|
|
|
|
w0 = tau*fc/srate
|
|
|
|
zb = s2z1(w0, sb, cs - 1)
|
|
|
|
za = s2z1(w0, sa, cs - 1)
|
|
|
|
return zb*gain, za
|
|
|
|
|
2017-09-21 04:04:22 -07:00
|
|
|
|
|
|
|
# set our preference. zcgen_py is 1000+ times faster than zcgen_sym.
|
2015-10-18 23:06:39 -07:00
|
|
|
zcgen = zcgen_py
|
|
|
|
|
2017-09-21 04:04:22 -07:00
|
|
|
# s2z_any is only ~2.4 times slower than s2z_two
|
|
|
|
# and allows for filters of any degree.
|
2015-10-18 23:06:39 -07:00
|
|
|
s2z = s2z_any
|