dsp/lib/fft.py

51 lines
1.2 KiB
Python
Raw Normal View History

2015-10-18 23:06:39 -07:00
from . import rfft
import numpy as np
import scipy.signal as sig
2017-09-21 04:04:22 -07:00
2018-03-01 04:04:27 -08:00
def magnitudes_window_setup(s, size=8192, overlap=0.661):
# note: the default overlap value is only
# optimal for a blackman-harris window.
2015-10-18 23:06:39 -07:00
L = s.shape[0]
step = np.ceil(size*(1 - overlap))
segs = np.ceil(L/step)
return step, segs
2017-09-21 04:04:22 -07:00
2015-10-18 23:06:39 -07:00
def magnitudes(s, size=8192):
step, segs = magnitudes_window_setup(s, size)
L = s.shape[0]
# blindly pad with zeros for friendlier ffts and overlapping
z = np.zeros(size)
2015-11-10 04:04:41 -08:00
s = np.r_[s, z]
2015-10-18 23:06:39 -07:00
win_size = size
win = sig.blackmanharris(win_size)
2018-03-01 04:04:27 -08:00
win /= np.sqrt(np.sum(np.square(win)))
2015-10-18 23:06:39 -07:00
count = 0
for i in range(0, L - 1, int(step)):
windowed = s[i:i+win_size]*win
power = np.abs(rfft(windowed, size))**2
2015-10-18 23:33:46 -07:00
# this scraps the nyquist value to get exactly 'size' outputs
2015-10-18 23:06:39 -07:00
yield power[0:size]
count += 1
2017-09-21 04:04:22 -07:00
# assert(segs == count) # this is probably no good in a generator
2015-10-18 23:06:39 -07:00
def averfft(s, size=8192):
"""calculates frequency magnitudes by fft and averages them together."""
step, segs = magnitudes_window_setup(s, size)
avg = np.zeros(size)
for power in magnitudes(s, size):
avg += power/segs
avg_db = 10*np.log10(avg)
return avg_db