49 lines
1.1 KiB
Python
49 lines
1.1 KiB
Python
|
from . import rfft
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.signal as sig
|
||
|
|
||
|
def magnitudes_window_setup(s, size=8192):
|
||
|
L = s.shape[0]
|
||
|
overlap = 0.661
|
||
|
step = np.ceil(size*(1 - overlap))
|
||
|
segs = np.ceil(L/step)
|
||
|
return step, segs
|
||
|
|
||
|
def magnitudes(s, size=8192):
|
||
|
import scipy.linalg as linalg
|
||
|
|
||
|
step, segs = magnitudes_window_setup(s, size)
|
||
|
|
||
|
L = s.shape[0]
|
||
|
|
||
|
# blindly pad with zeros for friendlier ffts and overlapping
|
||
|
z = np.zeros(size)
|
||
|
s = np.hstack((s, z))
|
||
|
|
||
|
win_size = size
|
||
|
|
||
|
win = sig.blackmanharris(win_size)
|
||
|
win /= linalg.norm(win)
|
||
|
|
||
|
count = 0
|
||
|
for i in range(0, L - 1, int(step)):
|
||
|
windowed = s[i:i+win_size]*win
|
||
|
power = np.abs(rfft(windowed, size))**2
|
||
|
# this scraps the nyquist value to get exactly size outputs
|
||
|
yield power[0:size]
|
||
|
count += 1
|
||
|
|
||
|
#assert(segs == count)
|
||
|
|
||
|
def averfft(s, size=8192):
|
||
|
"""calculates frequency magnitudes by fft and averages them together."""
|
||
|
step, segs = magnitudes_window_setup(s, size)
|
||
|
|
||
|
avg = np.zeros(size)
|
||
|
for power in magnitudes(s, size):
|
||
|
avg += power/segs
|
||
|
|
||
|
avg_db = 10*np.log10(avg)
|
||
|
return avg_db
|