backyard/rs_dissection/ars_lips_release.py
2022-06-07 07:15:31 +02:00

95 lines
3.3 KiB
Python

#!/usr/bin/env python3
# the basis of this algorithm is described by Ben Recht et al.
# Augmented Random Search: https://arxiv.org/abs/1803.07055
# see also https://www.argmin.net/
import numpy as np
def heuristic(costs, deltas, center_cost):
# this is drawing a quadratic through antithetically-sampled points
# (and the single center point shared with each pair in that generation),
# then dividing by the quadratic's peak absolute derivative.
d = np.linalg.norm(deltas, axis=1)
c0 = costs[:, 0] - center_cost
c1 = costs[:, 1] - center_cost
l0 = np.abs(3 * c1 + c0)
l1 = np.abs(c1 + 3 * c0)
peak = np.maximum(l0, l1) / (2 * d)
#peak = np.sqrt(np.square(3 * c1 + c0) + np.square(c1 + 3 * c0)) / (2 * d)
#peak *= np.sqrt(np.pi / 4) # keeps the area consistent with the parallelogram
return costs / np.where(np.abs(peak) < 1e-7, 1, peak)[:, None]
def populate(f, center, popsize, sigma):
costs, deltas = [], []
for p in range(popsize):
delta = np.random.normal(scale=sigma, size=center.shape)
cost_pos = f(center + delta)
cost_neg = f(center - delta)
costs.append((cost_pos, cost_neg))
deltas.append(delta)
return np.array(costs, float), np.array(deltas, float)
def minimize(objective, init, iterations,
sigma=0.1, popsize=None, step_size=1.0,
true_objective=None):
if popsize is None:
# it's still better to provide one yourself.
popsize = int(np.sqrt(len(init)))
center = np.array(init, float, copy=True)
center_cost = objective(center)
history = []
def track():
if true_objective is None:
cost = center_cost
else:
cost = true_objective(center)
history.append(cost)
track()
for i in range(iterations):
costs, deltas = populate(objective, center, popsize, sigma)
costs = heuristic(costs, deltas, center_cost)
flat_costs = costs[:, 0] - costs[:, 1]
step = np.average(deltas / sigma * flat_costs[:, None], axis=0)
center -= step_size * step
center_cost = objective(center)
track()
return center, history
if __name__ == '__main__':
# get this here: https://github.com/imh/hipsterplot/blob/master/hipsterplot.py
from hipsterplot import plot
np.random.seed(42070)
problem_size = 100
rotation, _ = np.linalg.qr(np.random.randn(problem_size, problem_size))
init = np.random.uniform(-5, 5, problem_size)
def ellipsoid_problem(x):
return np.sum(10**(6 * np.linspace(0, 1, len(x))) * np.square(x))
def rotated_problem(x):
return ellipsoid_problem(rotation @ x)
def noisy_problem(x):
multiplicative_noise = np.random.uniform(0.707, 1.414)
additive_noise = np.abs(np.random.normal(scale=50000))
return rotated_problem(x) * multiplicative_noise + additive_noise
objective, true_objective = noisy_problem, rotated_problem
optimized, history = minimize(objective, init, 1000,
step_size=0.25, sigma=0.3,
true_objective=true_objective)
print(" " * 11 + "plot of log10-losses over time")
plot(np.log10(history), num_y_chars=23)
print("loss, before optimization: {:9.6f}".format(true_objective(init)))
print("loss, after optimization: {:9.6f}".format(true_objective(optimized)))