149 lines
4 KiB
Python
149 lines
4 KiB
Python
# -*- coding: utf-8 -*-
|
|
from numpy import cos, sqrt, sin, abs
|
|
from .go_benchmark import Benchmark
|
|
|
|
|
|
class NeedleEye(Benchmark):
|
|
|
|
r"""
|
|
NeedleEye objective function.
|
|
|
|
This class defines the Needle-Eye [1]_ global optimization problem. This is a
|
|
a multimodal minimization problem defined as follows:
|
|
|
|
.. math::
|
|
|
|
f_{\text{NeedleEye}}(x) =
|
|
\begin{cases}
|
|
1 & \textrm{if }\hspace{5pt} \lvert x_i \rvert < eye \hspace{5pt}
|
|
\forall i \\
|
|
\sum_{i=1}^n (100 + \lvert x_i \rvert) & \textrm{if } \hspace{5pt}
|
|
\lvert x_i \rvert > eye \\
|
|
0 & \textrm{otherwise}\\
|
|
\end{cases}
|
|
|
|
|
|
Where, in this exercise, :math:`eye = 0.0001`.
|
|
|
|
Here, :math:`n` represents the number of dimensions and
|
|
:math:`x_i \in [-10, 10]` for :math:`i = 1, ..., n`.
|
|
|
|
*Global optimum*: :math:`f(x) = 1` for :math:`x_i = 0` for
|
|
:math:`i = 1, ..., n`
|
|
|
|
.. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015
|
|
"""
|
|
|
|
def __init__(self, dimensions=2):
|
|
Benchmark.__init__(self, dimensions)
|
|
|
|
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
|
|
|
|
self.global_optimum = [[0.0 for _ in range(self.N)]]
|
|
self.fglob = 1.0
|
|
self.change_dimensionality = True
|
|
|
|
def fun(self, x, *args):
|
|
self.nfev += 1
|
|
|
|
f = fp = 0.0
|
|
eye = 0.0001
|
|
|
|
for val in x:
|
|
if abs(val) >= eye:
|
|
fp = 1.0
|
|
f += 100.0 + abs(val)
|
|
else:
|
|
f += 1.0
|
|
|
|
if fp < 1e-6:
|
|
f = f / self.N
|
|
|
|
return f
|
|
|
|
|
|
class NewFunction01(Benchmark):
|
|
|
|
r"""
|
|
NewFunction01 objective function.
|
|
|
|
This class defines the NewFunction01 [1]_ global optimization problem. This is a
|
|
multimodal minimization problem defined as follows:
|
|
|
|
.. math::
|
|
|
|
f_{\text{NewFunction01}}(x) = \left | {\cos\left(\sqrt{\left|{x_{1}^{2}
|
|
+ x_{2}}\right|}\right)} \right |^{0.5} + (x_{1} + x_{2})/100
|
|
|
|
|
|
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
|
|
|
|
*Global optimum*: :math:`f(x) = -0.18459899925` for
|
|
:math:`x = [-8.46669057, -9.99982177]`
|
|
|
|
.. [1] Mishra, S. Global Optimization by Differential Evolution and
|
|
Particle Swarm Methods: Evaluation on Some Benchmark Functions.
|
|
Munich Personal RePEc Archive, 2006, 1005
|
|
|
|
TODO line 355
|
|
"""
|
|
|
|
def __init__(self, dimensions=2):
|
|
Benchmark.__init__(self, dimensions)
|
|
|
|
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
|
|
|
|
self.global_optimum = [[-8.46668984648, -9.99980944557]]
|
|
self.fglob = -0.184648852475
|
|
|
|
def fun(self, x, *args):
|
|
self.nfev += 1
|
|
|
|
return ((abs(cos(sqrt(abs(x[0] ** 2 + x[1]))))) ** 0.5
|
|
+ 0.01 * (x[0] + x[1]))
|
|
|
|
|
|
class NewFunction02(Benchmark):
|
|
|
|
r"""
|
|
NewFunction02 objective function.
|
|
|
|
This class defines the NewFunction02 global optimization problem. This is a
|
|
multimodal minimization problem defined as follows:
|
|
|
|
.. math::
|
|
|
|
f_{\text{NewFunction02}}(x) = \left | {\sin\left(\sqrt{\lvert{x_{1}^{2}
|
|
+ x_{2}}\rvert}\right)} \right |^{0.5} + (x_{1} + x_{2})/100
|
|
|
|
|
|
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
|
|
|
|
*Global optimum*: :math:`f(x) = -0.19933159253` for
|
|
:math:`x = [-9.94103375, -9.99771235]`
|
|
|
|
.. [1] Mishra, S. Global Optimization by Differential Evolution and
|
|
Particle Swarm Methods: Evaluation on Some Benchmark Functions.
|
|
Munich Personal RePEc Archive, 2006, 1005
|
|
|
|
TODO Line 368
|
|
TODO WARNING, minimum value is estimated from running many optimisations and
|
|
choosing the best.
|
|
"""
|
|
|
|
def __init__(self, dimensions=2):
|
|
Benchmark.__init__(self, dimensions)
|
|
|
|
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
|
|
|
|
self.global_optimum = [[-9.94114736324, -9.99997128772]]
|
|
self.fglob = -0.199409030092
|
|
|
|
def fun(self, x, *args):
|
|
self.nfev += 1
|
|
|
|
return ((abs(sin(sqrt(abs(x[0] ** 2 + x[1]))))) ** 0.5
|
|
+ 0.01 * (x[0] + x[1]))
|
|
|
|
|
|
#Newfunction 3 from Gavana is entered as Mishra05.
|