thursday/evolopy/MFO.py

179 lines
5.6 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Mon May 16 10:42:18 2016
@author: hossam
"""
import random
import numpy
import math
from .solution import solution
import time
def MFO(objf, lb, ub, dim, N, Max_iteration):
# Max_iteration=1000
# lb=-100
# ub=100
# dim=30
#N = 50 # Number of search agents
if not isinstance(lb, list):
lb = [lb] * dim
if not isinstance(ub, list):
ub = [ub] * dim
# Initialize the positions of moths
Moth_pos = numpy.zeros((N, dim))
for i in range(dim):
Moth_pos[:, i] = numpy.random.uniform(0, 1, N) * (ub[i] - lb[i]) + lb[i]
Moth_fitness = numpy.full(N, float("inf"))
# Moth_fitness=numpy.fell(float("inf"))
Convergence_curve = numpy.zeros(Max_iteration)
sorted_population = numpy.copy(Moth_pos)
fitness_sorted = numpy.zeros(N)
#####################
best_flames = numpy.copy(Moth_pos)
best_flame_fitness = numpy.zeros(N)
####################
double_population = numpy.zeros((2 * N, dim))
double_fitness = numpy.zeros(2 * N)
double_sorted_population = numpy.zeros((2 * N, dim))
double_fitness_sorted = numpy.zeros(2 * N)
#########################
previous_population = numpy.zeros((N, dim))
previous_fitness = numpy.zeros(N)
s = solution()
print('MFO is optimizing "' + objf.__name__ + '"')
timerStart = time.time()
s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S")
Iteration = 1
# Main loop
while Iteration < Max_iteration:
# Number of flames Eq. (3.14) in the paper
Flame_no = round(N - Iteration * ((N - 1) / Max_iteration))
for i in range(0, N):
# Check if moths go out of the search spaceand bring it back
for j in range(dim):
Moth_pos[i, j] = numpy.clip(Moth_pos[i, j], lb[j], ub[j])
# evaluate moths
Moth_fitness[i] = objf(Moth_pos[i, :])
if Iteration == 1:
# Sort the first population of moths
fitness_sorted = numpy.sort(Moth_fitness)
I = numpy.argsort(Moth_fitness)
sorted_population = Moth_pos[I, :]
# Update the flames
best_flames = sorted_population
best_flame_fitness = fitness_sorted
else:
#
# # Sort the moths
double_population = numpy.concatenate(
(previous_population, best_flames), axis=0
)
double_fitness = numpy.concatenate(
(previous_fitness, best_flame_fitness), axis=0
)
#
double_fitness_sorted = numpy.sort(double_fitness)
I2 = numpy.argsort(double_fitness)
#
#
for newindex in range(0, 2 * N):
double_sorted_population[newindex, :] = numpy.array(
double_population[I2[newindex], :]
)
fitness_sorted = double_fitness_sorted[0:N]
sorted_population = double_sorted_population[0:N, :]
#
# # Update the flames
best_flames = sorted_population
best_flame_fitness = fitness_sorted
#
# # Update the position best flame obtained so far
Best_flame_score = fitness_sorted[0]
Best_flame_pos = sorted_population[0, :]
#
previous_population = Moth_pos
previous_fitness = Moth_fitness
#
# a linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
a = -1 + Iteration * ((-1) / Max_iteration)
# Loop counter
for i in range(0, N):
#
for j in range(0, dim):
if (
i <= Flame_no
): # Update the position of the moth with respect to its corresponsing flame
#
# D in Eq. (3.13)
distance_to_flame = abs(sorted_population[i, j] - Moth_pos[i, j])
b = 1
t = (a - 1) * random.random() + 1
#
# % Eq. (3.12)
Moth_pos[i, j] = (
distance_to_flame * math.exp(b * t) * math.cos(t * 2 * math.pi)
+ sorted_population[i, j]
)
# end
#
if (
i > Flame_no
): # Upaate the position of the moth with respct to one flame
#
# % Eq. (3.13)
distance_to_flame = abs(sorted_population[i, j] - Moth_pos[i, j])
b = 1
t = (a - 1) * random.random() + 1
#
# % Eq. (3.12)
Moth_pos[i, j] = (
distance_to_flame * math.exp(b * t) * math.cos(t * 2 * math.pi)
+ sorted_population[Flame_no, j]
)
Convergence_curve[Iteration] = Best_flame_score
# Display best fitness along the iteration
if Iteration % 1 == 0:
print(
[
"At iteration "
+ str(Iteration)
+ " the best fitness is "
+ str(Best_flame_score)
]
)
Iteration = Iteration + 1
timerEnd = time.time()
s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime = timerEnd - timerStart
s.convergence = Convergence_curve
s.optimizer = "MFO"
s.bestIndividual = Best_flame_pos
s.objfname = objf.__name__
return s