thursday/evolopy/SSA.py

125 lines
3.5 KiB
Python

import random
import numpy
import math
from .solution import solution
import time
def SSA(objf, lb, ub, dim, N, Max_iteration):
# Max_iteration=1000
# lb=-100
# ub=100
# dim=30
N = 50 # Number of search agents
if not isinstance(lb, list):
lb = [lb] * dim
if not isinstance(ub, list):
ub = [ub] * dim
Convergence_curve = numpy.zeros(Max_iteration)
# Initialize the positions of salps
SalpPositions = numpy.zeros((N, dim))
for i in range(dim):
SalpPositions[:, i] = numpy.random.uniform(0, 1, N) * (ub[i] - lb[i]) + lb[i]
SalpFitness = numpy.full(N, float("inf"))
FoodPosition = numpy.zeros(dim)
FoodFitness = float("inf")
# Moth_fitness=numpy.fell(float("inf"))
s = solution()
print('SSA is optimizing "' + objf.__name__ + '"')
timerStart = time.time()
s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S")
for i in range(0, N):
# evaluate moths
SalpFitness[i] = objf(SalpPositions[i, :])
sorted_salps_fitness = numpy.sort(SalpFitness)
I = numpy.argsort(SalpFitness)
Sorted_salps = numpy.copy(SalpPositions[I, :])
FoodPosition = numpy.copy(Sorted_salps[0, :])
FoodFitness = sorted_salps_fitness[0]
Iteration = 1
# Main loop
while Iteration < Max_iteration:
# Number of flames Eq. (3.14) in the paper
# Flame_no=round(N-Iteration*((N-1)/Max_iteration));
c1 = 2 * math.exp(-((4 * Iteration / Max_iteration) ** 2))
# Eq. (3.2) in the paper
for i in range(0, N):
SalpPositions = numpy.transpose(SalpPositions)
if i < N / 2:
for j in range(0, dim):
c2 = random.random()
c3 = random.random()
# Eq. (3.1) in the paper
if c3 < 0.5:
SalpPositions[j, i] = FoodPosition[j] + c1 * (
(ub[j] - lb[j]) * c2 + lb[j]
)
else:
SalpPositions[j, i] = FoodPosition[j] - c1 * (
(ub[j] - lb[j]) * c2 + lb[j]
)
####################
elif i >= N / 2 and i < N + 1:
point1 = SalpPositions[:, i - 1]
point2 = SalpPositions[:, i]
SalpPositions[:, i] = (point2 + point1) / 2
# Eq. (3.4) in the paper
SalpPositions = numpy.transpose(SalpPositions)
for i in range(0, N):
# Check if salps go out of the search spaceand bring it back
for j in range(dim):
SalpPositions[i, j] = numpy.clip(SalpPositions[i, j], lb[j], ub[j])
SalpFitness[i] = objf(SalpPositions[i, :])
if SalpFitness[i] < FoodFitness:
FoodPosition = numpy.copy(SalpPositions[i, :])
FoodFitness = SalpFitness[i]
# Display best fitness along the iteration
if Iteration % 1 == 0:
print(
[
"At iteration "
+ str(Iteration)
+ " the best fitness is "
+ str(FoodFitness)
]
)
Convergence_curve[Iteration] = FoodFitness
Iteration = Iteration + 1
timerEnd = time.time()
s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S")
s.executionTime = timerEnd - timerStart
s.convergence = Convergence_curve
s.optimizer = "SSA"
s.bestIndividual = FoodPosition
s.objfname = objf.__name__
return s