thursday/go_benchmark_functions/go_funcs_G.py

222 lines
6.3 KiB
Python

# -*- coding: utf-8 -*-
import numpy as np
from numpy import abs, sin, cos, exp, floor, log, arange, prod, sqrt, sum
from .go_benchmark import Benchmark
class Gear(Benchmark):
r"""
Gear objective function.
This class defines the Gear [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{Gear}}({x}) = \left \{ \frac{1.0}{6.931}
- \frac{\lfloor x_1\rfloor \lfloor x_2 \rfloor }
{\lfloor x_3 \rfloor \lfloor x_4 \rfloor } \right\}^2
with :math:`x_i \in [12, 60]` for :math:`i = 1, ..., 4`.
*Global optimum*: :math:`f(x) = 2.7 \cdot 10^{-12}` for :math:`x =
[16, 19, 43, 49]`, where the various :math:`x_i` may be permuted.
.. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015
"""
def __init__(self, dimensions=4):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([12.0] * self.N, [60.0] * self.N))
self.global_optimum = [[16, 19, 43, 49]]
self.fglob = 2.7e-12
def fun(self, x, *args):
self.nfev += 1
return (1. / 6.931
- floor(x[0]) * floor(x[1]) / floor(x[2]) / floor(x[3])) ** 2
class Giunta(Benchmark):
r"""
Giunta objective function.
This class defines the Giunta [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{Giunta}}({x}) = 0.6 + \sum_{i=1}^{n} \left[\sin^{2}\left(1
- \frac{16}{15} x_i\right) - \frac{1}{50} \sin\left(4
- \frac{64}{15} x_i\right) - \sin\left(1
- \frac{16}{15} x_i\right)\right]
with :math:`x_i \in [-1, 1]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0.06447042053690566` for
:math:`x = [0.4673200277395354, 0.4673200169591304]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO Jamil has the wrong fglob. I think there is a lower value.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-1.0] * self.N, [1.0] * self.N))
self.global_optimum = [[0.4673200277395354, 0.4673200169591304]]
self.fglob = 0.06447042053690566
def fun(self, x, *args):
self.nfev += 1
arg = 16 * x / 15.0 - 1
return 0.6 + sum(sin(arg) + sin(arg) ** 2 + sin(4 * arg) / 50.)
class GoldsteinPrice(Benchmark):
r"""
Goldstein-Price objective function.
This class defines the Goldstein-Price [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{GoldsteinPrice}}(x) = \left[ 1 + (x_1 + x_2 + 1)^2
(19 - 14 x_1 + 3 x_1^2 - 14 x_2 + 6 x_1 x_2 + 3 x_2^2) \right]
\left[ 30 + ( 2x_1 - 3 x_2)^2 (18 - 32 x_1 + 12 x_1^2
+ 48 x_2 - 36 x_1 x_2 + 27 x_2^2) \right]
with :math:`x_i \in [-2, 2]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 3` for :math:`x = [0, -1]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-2.0] * self.N, [2.0] * self.N))
self.global_optimum = [[0., -1.]]
self.fglob = 3.0
def fun(self, x, *args):
self.nfev += 1
a = (1 + (x[0] + x[1] + 1) ** 2
* (19 - 14 * x[0] + 3 * x[0] ** 2
- 14 * x[1] + 6 * x[0] * x[1] + 3 * x[1] ** 2))
b = (30 + (2 * x[0] - 3 * x[1]) ** 2
* (18 - 32 * x[0] + 12 * x[0] ** 2
+ 48 * x[1] - 36 * x[0] * x[1] + 27 * x[1] ** 2))
return a * b
class Griewank(Benchmark):
r"""
Griewank objective function.
This class defines the Griewank global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{Griewank}}(x) = \frac{1}{4000}\sum_{i=1}^n x_i^2
- \prod_{i=1}^n\cos\left(\frac{x_i}{\sqrt{i}}\right) + 1
Here, :math:`n` represents the number of dimensions and
:math:`x_i \in [-600, 600]` for :math:`i = 1, ..., n`.
*Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for
:math:`i = 1, ..., n`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-100.0] * self.N,
[100.0] * self.N))
self.custom_bounds = [(-50, 50), (-50, 50)]
self.global_optimum = [[0 for _ in range(self.N)]]
self.fglob = 0.0
self.change_dimensionality = True
def fun(self, x, *args):
self.nfev += 1
i = arange(1., np.size(x) + 1.)
return sum(x ** 2 / 4000) - prod(cos(x / sqrt(i))) + 1
class Gulf(Benchmark):
r"""
Gulf objective function.
This class defines the Gulf [1]_ global optimization problem. This is a
multimodal minimization problem defined as follows:
.. math::
f_{\text{Gulf}}(x) = \sum_{i=1}^99 \left( e^{-\frac{\lvert y_i
- x_2 \rvert^{x_3}}{x_1}} - t_i \right)
Where, in this exercise:
.. math::
t_i = i/100 \\
y_i = 25 + [-50 \log(t_i)]^{2/3}
with :math:`x_i \in [0, 60]` for :math:`i = 1, 2, 3`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [50, 25, 1.5]`
.. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015
TODO Gavana has absolute of (u - x[1]) term. Jamil doesn't... Leaving it in.
"""
def __init__(self, dimensions=3):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([0.0] * self.N, [50.0] * self.N))
self.global_optimum = [[50.0, 25.0, 1.5]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
m = 99.
i = arange(1., m + 1)
u = 25 + (-50 * log(i / 100.)) ** (2 / 3.)
vec = (exp(-((abs(u - x[1])) ** x[2] / x[0])) - i / 100.)
return sum(vec ** 2)