thursday/go_benchmark_functions/go_funcs_B.py

759 lines
21 KiB
Python

# -*- coding: utf-8 -*-
from numpy import abs, cos, exp, log, arange, pi, sin, sqrt, sum
from .go_benchmark import Benchmark
class BartelsConn(Benchmark):
r"""
Bartels-Conn objective function.
The BartelsConn [1]_ global optimization problem is a multimodal
minimization problem defined as follows:
.. math::
f_{\text{BartelsConn}}(x) = \lvert {x_1^2 + x_2^2 + x_1x_2} \rvert +
\lvert {\sin(x_1)} \rvert + \lvert {\cos(x_2)} \rvert
with :math:`x_i \in [-500, 500]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 1` for :math:`x = [0, 0]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-500.] * self.N, [500.] * self.N))
self.global_optimum = [[0 for _ in range(self.N)]]
self.fglob = 1.0
def fun(self, x, *args):
self.nfev += 1
return (abs(x[0] ** 2.0 + x[1] ** 2.0 + x[0] * x[1]) + abs(sin(x[0]))
+ abs(cos(x[1])))
class Beale(Benchmark):
r"""
Beale objective function.
The Beale [1]_ global optimization problem is a multimodal
minimization problem defined as follows:
.. math::
f_{\text{Beale}}(x) = \left(x_1 x_2 - x_1 + 1.5\right)^{2} +
\left(x_1 x_2^{2} - x_1 + 2.25\right)^{2} + \left(x_1 x_2^{3} - x_1 +
2.625\right)^{2}
with :math:`x_i \in [-4.5, 4.5]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0` for :math:`x=[3, 0.5]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-4.5] * self.N, [4.5] * self.N))
self.global_optimum = [[3.0, 0.5]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return ((1.5 - x[0] + x[0] * x[1]) ** 2
+ (2.25 - x[0] + x[0] * x[1] ** 2) ** 2
+ (2.625 - x[0] + x[0] * x[1] ** 3) ** 2)
class BiggsExp02(Benchmark):
r"""
BiggsExp02 objective function.
The BiggsExp02 [1]_ global optimization problem is a multimodal minimization
problem defined as follows
.. math::
\begin{matrix}
f_{\text{BiggsExp02}}(x) = \sum_{i=1}^{10} (e^{-t_i x_1}
- 5 e^{-t_i x_2} - y_i)^2 \\
t_i = 0.1 i\\
y_i = e^{-t_i} - 5 e^{-10t_i}\\
\end{matrix}
with :math:`x_i \in [0, 20]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([0] * 2,
[20] * 2))
self.global_optimum = [[1., 10.]]
self.fglob = 0
def fun(self, x, *args):
self.nfev += 1
t = arange(1, 11.) * 0.1
y = exp(-t) - 5 * exp(-10 * t)
vec = (exp(-t * x[0]) - 5 * exp(-t * x[1]) - y) ** 2
return sum(vec)
class BiggsExp03(Benchmark):
r"""
BiggsExp03 objective function.
The BiggsExp03 [1]_ global optimization problem is a multimodal minimization
problem defined as follows
.. math::
\begin{matrix}\ f_{\text{BiggsExp03}}(x) = \sum_{i=1}^{10}
(e^{-t_i x_1} - x_3e^{-t_i x_2} - y_i)^2\\
t_i = 0.1i\\
y_i = e^{-t_i} - 5e^{-10 t_i}\\
\end{matrix}
with :math:`x_i \in [0, 20]` for :math:`i = 1, 2, 3`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 5]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=3):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([0] * 3,
[20] * 3))
self.global_optimum = [[1., 10., 5.]]
self.fglob = 0
def fun(self, x, *args):
self.nfev += 1
t = arange(1., 11.) * 0.1
y = exp(-t) - 5 * exp(-10 * t)
vec = (exp(-t * x[0]) - x[2] * exp(-t * x[1]) - y) ** 2
return sum(vec)
class BiggsExp04(Benchmark):
r"""
BiggsExp04 objective function.
The BiggsExp04 [1]_ global optimization problem is a multimodal
minimization problem defined as follows
.. math::
\begin{matrix}\ f_{\text{BiggsExp04}}(x) = \sum_{i=1}^{10}
(x_3 e^{-t_i x_1} - x_4 e^{-t_i x_2} - y_i)^2\\
t_i = 0.1i\\
y_i = e^{-t_i} - 5 e^{-10 t_i}\\
\end{matrix}
with :math:`x_i \in [0, 20]` for :math:`i = 1, ..., 4`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 1, 5]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=4):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([0.] * 4,
[20.] * 4))
self.global_optimum = [[1., 10., 1., 5.]]
self.fglob = 0
def fun(self, x, *args):
self.nfev += 1
t = arange(1, 11.) * 0.1
y = exp(-t) - 5 * exp(-10 * t)
vec = (x[2] * exp(-t * x[0]) - x[3] * exp(-t * x[1]) - y) ** 2
return sum(vec)
class BiggsExp05(Benchmark):
r"""
BiggsExp05 objective function.
The BiggsExp05 [1]_ global optimization problem is a multimodal minimization
problem defined as follows
.. math::
\begin{matrix}\ f_{\text{BiggsExp05}}(x) = \sum_{i=1}^{11}
(x_3 e^{-t_i x_1} - x_4 e^{-t_i x_2} + 3 e^{-t_i x_5} - y_i)^2\\
t_i = 0.1i\\
y_i = e^{-t_i} - 5e^{-10 t_i} + 3e^{-4 t_i}\\
\end{matrix}
with :math:`x_i \in [0, 20]` for :math:`i=1, ..., 5`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 1, 5, 4]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=5):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([0.] * 5,
[20.] * 5))
self.global_optimum = [[1., 10., 1., 5., 4.]]
self.fglob = 0
def fun(self, x, *args):
self.nfev += 1
t = arange(1, 12.) * 0.1
y = exp(-t) - 5 * exp(-10 * t) + 3 * exp(-4 * t)
vec = (x[2] * exp(-t * x[0]) - x[3] * exp(-t * x[1])
+ 3 * exp(-t * x[4]) - y) ** 2
return sum(vec)
class Bird(Benchmark):
r"""
Bird objective function.
The Bird global optimization problem is a multimodal minimization
problem defined as follows
.. math::
f_{\text{Bird}}(x) = \left(x_1 - x_2\right)^{2} + e^{\left[1 -
\sin\left(x_1\right) \right]^{2}} \cos\left(x_2\right) + e^{\left[1 -
\cos\left(x_2\right)\right]^{2}} \sin\left(x_1\right)
with :math:`x_i \in [-2\pi, 2\pi]`
*Global optimum*: :math:`f(x) = -106.7645367198034` for :math:`x
= [4.701055751981055, 3.152946019601391]` or :math:`x =
[-1.582142172055011, -3.130246799635430]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-2.0 * pi] * self.N,
[2.0 * pi] * self.N))
self.global_optimum = [[4.701055751981055, 3.152946019601391],
[-1.582142172055011, -3.130246799635430]]
self.fglob = -106.7645367198034
def fun(self, x, *args):
self.nfev += 1
return (sin(x[0]) * exp((1 - cos(x[1])) ** 2)
+ cos(x[1]) * exp((1 - sin(x[0])) ** 2) + (x[0] - x[1]) ** 2)
class Bohachevsky1(Benchmark):
r"""
Bohachevsky 1 objective function.
The Bohachevsky 1 [1]_ global optimization problem is a multimodal
minimization problem defined as follows
.. math::
f_{\text{Bohachevsky}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 -
0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right]
Here, :math:`n` represents the number of dimensions and :math:`x_i \in
[-15, 15]` for :math:`i = 1, ..., n`.
*Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1,
..., n`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO: equation needs to be fixed up in the docstring. see Jamil#17
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-100.0] * self.N, [100.0] * self.N))
self.global_optimum = [[0 for _ in range(self.N)]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return (x[0] ** 2 + 2 * x[1] ** 2 - 0.3 * cos(3 * pi * x[0])
- 0.4 * cos(4 * pi * x[1]) + 0.7)
class Bohachevsky2(Benchmark):
r"""
Bohachevsky 2 objective function.
The Bohachevsky 2 [1]_ global optimization problem is a multimodal
minimization problem defined as follows
.. math::
f_{\text{Bohachevsky}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 -
0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right]
Here, :math:`n` represents the number of dimensions and :math:`x_i \in
[-15, 15]` for :math:`i = 1, ..., n`.
*Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1,
..., n`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO: equation needs to be fixed up in the docstring. Jamil is also wrong.
There should be no 0.4 factor in front of the cos term
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-100.0] * self.N, [100.0] * self.N))
self.global_optimum = [[0 for _ in range(self.N)]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return (x[0] ** 2 + 2 * x[1] ** 2 - 0.3 * cos(3 * pi * x[0])
* cos(4 * pi * x[1]) + 0.3)
class Bohachevsky3(Benchmark):
r"""
Bohachevsky 3 objective function.
The Bohachevsky 3 [1]_ global optimization problem is a multimodal
minimization problem defined as follows
.. math::
f_{\text{Bohachevsky}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 -
0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right]
Here, :math:`n` represents the number of dimensions and :math:`x_i \in
[-15, 15]` for :math:`i = 1, ..., n`.
*Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1,
..., n`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO: equation needs to be fixed up in the docstring. Jamil#19
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-100.0] * self.N, [100.0] * self.N))
self.global_optimum = [[0 for _ in range(self.N)]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return (x[0] ** 2 + 2 * x[1] ** 2
- 0.3 * cos(3 * pi * x[0] + 4 * pi * x[1]) + 0.3)
class BoxBetts(Benchmark):
r"""
BoxBetts objective function.
The BoxBetts global optimization problem is a multimodal
minimization problem defined as follows
.. math::
f_{\text{BoxBetts}}(x) = \sum_{i=1}^k g(x_i)^2
Where, in this exercise:
.. math::
g(x) = e^{-0.1i x_1} - e^{-0.1i x_2} - x_3\left[e^{-0.1i}
- e^{-i}\right]
And :math:`k = 10`.
Here, :math:`x_1 \in [0.9, 1.2], x_2 \in [9, 11.2], x_3 \in [0.9, 1.2]`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 1]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=3):
Benchmark.__init__(self, dimensions)
self._bounds = ([0.9, 1.2], [9.0, 11.2], [0.9, 1.2])
self.global_optimum = [[1.0, 10.0, 1.0]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
i = arange(1, 11)
g = (exp(-0.1 * i * x[0]) - exp(-0.1 * i * x[1])
- (exp(-0.1 * i) - exp(-i)) * x[2])
return sum(g**2)
class Branin01(Benchmark):
r"""
Branin01 objective function.
The Branin01 global optimization problem is a multimodal minimization
problem defined as follows
.. math::
f_{\text{Branin01}}(x) = \left(- 1.275 \frac{x_1^{2}}{\pi^{2}} + 5
\frac{x_1}{\pi} + x_2 -6\right)^{2} + \left(10 -\frac{5}{4 \pi} \right)
\cos\left(x_1\right) + 10
with :math:`x_1 \in [-5, 10], x_2 \in [0, 15]`
*Global optimum*: :math:`f(x) = 0.39788735772973816` for :math:`x =
[-\pi, 12.275]` or :math:`x = [\pi, 2.275]` or :math:`x = [3\pi, 2.475]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO: Jamil#22, one of the solutions is different
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = [(-5., 10.), (0., 15.)]
self.global_optimum = [[-pi, 12.275], [pi, 2.275], [3 * pi, 2.475]]
self.fglob = 0.39788735772973816
def fun(self, x, *args):
self.nfev += 1
return ((x[1] - (5.1 / (4 * pi ** 2)) * x[0] ** 2
+ 5 * x[0] / pi - 6) ** 2
+ 10 * (1 - 1 / (8 * pi)) * cos(x[0]) + 10)
class Branin02(Benchmark):
r"""
Branin02 objective function.
The Branin02 global optimization problem is a multimodal minimization
problem defined as follows
.. math::
f_{\text{Branin02}}(x) = \left(- 1.275 \frac{x_1^{2}}{\pi^{2}}
+ 5 \frac{x_1}{\pi} + x_2 - 6 \right)^{2} + \left(10 - \frac{5}{4 \pi}
\right) \cos\left(x_1\right) \cos\left(x_2\right)
+ \log(x_1^2+x_2^2 + 1) + 10
with :math:`x_i \in [-5, 15]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 5.559037` for :math:`x = [-3.2, 12.53]`
.. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = [(-5.0, 15.0), (-5.0, 15.0)]
self.global_optimum = [[-3.1969884, 12.52625787]]
self.fglob = 5.5589144038938247
def fun(self, x, *args):
self.nfev += 1
return ((x[1] - (5.1 / (4 * pi ** 2)) * x[0] ** 2
+ 5 * x[0] / pi - 6) ** 2
+ 10 * (1 - 1 / (8 * pi)) * cos(x[0]) * cos(x[1])
+ log(x[0] ** 2.0 + x[1] ** 2.0 + 1.0) + 10)
class Brent(Benchmark):
r"""
Brent objective function.
The Brent [1]_ global optimization problem is a multimodal minimization
problem defined as follows:
.. math::
f_{\text{Brent}}(x) = (x_1 + 10)^2 + (x_2 + 10)^2 + e^{(-x_1^2 -x_2^2)}
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [-10, -10]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO solution is different to Jamil#24
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
self.custom_bounds = ([-10, 2], [-10, 2])
self.global_optimum = [[-10.0, -10.0]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return ((x[0] + 10.0) ** 2.0 + (x[1] + 10.0) ** 2.0
+ exp(-x[0] ** 2.0 - x[1] ** 2.0))
class Brown(Benchmark):
r"""
Brown objective function.
The Brown [1]_ global optimization problem is a multimodal minimization
problem defined as follows:
.. math::
f_{\text{Brown}}(x) = \sum_{i=1}^{n-1}\left[
\left(x_i^2\right)^{x_{i + 1}^2 + 1}
+ \left(x_{i + 1}^2\right)^{x_i^2 + 1}\right]
with :math:`x_i \in [-1, 4]` for :math:`i=1,...,n`.
*Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for
:math:`i=1,...,n`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-1.0] * self.N, [4.0] * self.N))
self.custom_bounds = ([-1.0, 1.0], [-1.0, 1.0])
self.global_optimum = [[0 for _ in range(self.N)]]
self.fglob = 0.0
self.change_dimensionality = True
def fun(self, x, *args):
self.nfev += 1
x0 = x[:-1]
x1 = x[1:]
return sum((x0 ** 2.0) ** (x1 ** 2.0 + 1.0)
+ (x1 ** 2.0) ** (x0 ** 2.0 + 1.0))
class Bukin02(Benchmark):
r"""
Bukin02 objective function.
The Bukin02 [1]_ global optimization problem is a multimodal minimization
problem defined as follows:
.. math::
f_{\text{Bukin02}}(x) = 100 (x_2^2 - 0.01x_1^2 + 1)
+ 0.01(x_1 + 10)^2
with :math:`x_1 \in [-15, -5], x_2 \in [-3, 3]`
*Global optimum*: :math:`f(x) = -124.75` for :math:`x = [-15, 0]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO: I think that Gavana and Jamil are wrong on this function. In both
sources the x[1] term is not squared. As such there will be a minimum at
the smallest value of x[1].
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = [(-15.0, -5.0), (-3.0, 3.0)]
self.global_optimum = [[-15.0, 0.0]]
self.fglob = -124.75
def fun(self, x, *args):
self.nfev += 1
return (100 * (x[1] ** 2 - 0.01 * x[0] ** 2 + 1.0)
+ 0.01 * (x[0] + 10.0) ** 2.0)
class Bukin04(Benchmark):
r"""
Bukin04 objective function.
The Bukin04 [1]_ global optimization problem is a multimodal minimization
problem defined as follows:
.. math::
f_{\text{Bukin04}}(x) = 100 x_2^{2} + 0.01 \lvert{x_1 + 10}
\rvert
with :math:`x_1 \in [-15, -5], x_2 \in [-3, 3]`
*Global optimum*: :math:`f(x) = 0` for :math:`x = [-10, 0]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = [(-15.0, -5.0), (-3.0, 3.0)]
self.global_optimum = [[-10.0, 0.0]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return 100 * x[1] ** 2 + 0.01 * abs(x[0] + 10)
class Bukin06(Benchmark):
r"""
Bukin06 objective function.
The Bukin06 [1]_ global optimization problem is a multimodal minimization
problem defined as follows:
.. math::
f_{\text{Bukin06}}(x) = 100 \sqrt{ \lvert{x_2 - 0.01 x_1^{2}}
\rvert} + 0.01 \lvert{x_1 + 10} \rvert
with :math:`x_1 \in [-15, -5], x_2 \in [-3, 3]`
*Global optimum*: :math:`f(x) = 0` for :math:`x = [-10, 1]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = [(-15.0, -5.0), (-3.0, 3.0)]
self.global_optimum = [[-10.0, 1.0]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return 100 * sqrt(abs(x[1] - 0.01 * x[0] ** 2)) + 0.01 * abs(x[0] + 10)