thursday/go_benchmark_functions/go_benchmark.py

207 lines
5.8 KiB
Python

# -*- coding: utf-8 -*-
import numpy as np
from numpy import abs, asarray
from ..common import safe_import
with safe_import():
from scipy.special import factorial
class Benchmark:
"""
Defines a global optimization benchmark problem.
This abstract class defines the basic structure of a global
optimization problem. Subclasses should implement the ``fun`` method
for a particular optimization problem.
Attributes
----------
N : int
The dimensionality of the problem.
bounds : sequence
The lower/upper bounds to be used for minimizing the problem.
This a list of (lower, upper) tuples that contain the lower and upper
bounds for the problem. The problem should not be asked for evaluation
outside these bounds. ``len(bounds) == N``.
xmin : sequence
The lower bounds for the problem
xmax : sequence
The upper bounds for the problem
fglob : float
The global minimum of the evaluated function.
global_optimum : sequence
A list of vectors that provide the locations of the global minimum.
Note that some problems have multiple global minima, not all of which
may be listed.
nfev : int
the number of function evaluations that the object has been asked to
calculate.
change_dimensionality : bool
Whether we can change the benchmark function `x` variable length (i.e.,
the dimensionality of the problem)
custom_bounds : sequence
a list of tuples that contain lower/upper bounds for use in plotting.
"""
def __init__(self, dimensions):
"""
Initialises the problem
Parameters
----------
dimensions : int
The dimensionality of the problem
"""
self._dimensions = dimensions
self.nfev = 0
self.fglob = np.nan
self.global_optimum = None
self.change_dimensionality = False
self.custom_bounds = None
def __str__(self):
return '{0} ({1} dimensions)'.format(self.__class__.__name__, self.N)
def __repr__(self):
return self.__class__.__name__
def initial_vector(self):
"""
Random initialisation for the benchmark problem.
Returns
-------
x : sequence
a vector of length ``N`` that contains random floating point
numbers that lie between the lower and upper bounds for a given
parameter.
"""
return asarray([np.random.uniform(l, u) for l, u in self.bounds])
def success(self, x, tol=1.e-5):
"""
Tests if a candidate solution at the global minimum.
The default test is
Parameters
----------
x : sequence
The candidate vector for testing if the global minimum has been
reached. Must have ``len(x) == self.N``
tol : float
The evaluated function and known global minimum must differ by less
than this amount to be at a global minimum.
Returns
-------
bool : is the candidate vector at the global minimum?
"""
val = self.fun(asarray(x))
if abs(val - self.fglob) < tol:
return True
# the solution should still be in bounds, otherwise immediate fail.
if np.any(x > np.asfarray(self.bounds)[:, 1]):
return False
if np.any(x < np.asfarray(self.bounds)[:, 0]):
return False
# you found a lower global minimum. This shouldn't happen.
if val < self.fglob:
raise ValueError("Found a lower global minimum",
x,
val,
self.fglob)
return False
def fun(self, x):
"""
Evaluation of the benchmark function.
Parameters
----------
x : sequence
The candidate vector for evaluating the benchmark problem. Must
have ``len(x) == self.N``.
Returns
-------
val : float
the evaluated benchmark function
"""
raise NotImplementedError
def change_dimensions(self, ndim):
"""
Changes the dimensionality of the benchmark problem
The dimensionality will only be changed if the problem is suitable
Parameters
----------
ndim : int
The new dimensionality for the problem.
"""
if self.change_dimensionality:
self._dimensions = ndim
else:
raise ValueError('dimensionality cannot be changed for this'
'problem')
@property
def bounds(self):
"""
The lower/upper bounds to be used for minimizing the problem.
This a list of (lower, upper) tuples that contain the lower and upper
bounds for the problem. The problem should not be asked for evaluation
outside these bounds. ``len(bounds) == N``.
"""
if self.change_dimensionality:
return [self._bounds[0]] * self.N
else:
return self._bounds
@property
def N(self):
"""
The dimensionality of the problem.
Returns
-------
N : int
The dimensionality of the problem
"""
return self._dimensions
@property
def xmin(self):
"""
The lower bounds for the problem
Returns
-------
xmin : sequence
The lower bounds for the problem
"""
return asarray([b[0] for b in self.bounds])
@property
def xmax(self):
"""
The upper bounds for the problem
Returns
-------
xmax : sequence
The upper bounds for the problem
"""
return asarray([b[1] for b in self.bounds])