thursday/notwacube.py

137 lines
4.1 KiB
Python

from dlibcube2 import dlib_cube
from nevergradcube2 import NEVERGRAD2_OPTIMIZERS
from nloptcube2 import nlopt_neldermead_cube
from notwacube2 import make_birect, make_mercury, make_soo
from randomcube2 import another_random_cube, quasirandom_cube
from scipycube2 import (
make_shgo,
scipy_basinhopping_cube,
scipy_bfgs_2j_cube,
scipy_bfgs_3j_cube,
scipy_cg_2j_cube,
scipy_cg_3j_cube,
scipy_cobyla_cube,
scipy_direct_cube,
scipy_direct_l_cube,
# scipy_dogleg_cube,
scipy_lbfgsb_2j_cube,
scipy_lbfgsb_3j_cube,
scipy_neldermead_cube,
# scipy_newtoncg_cube,
scipy_powell_cube,
scipy_slsqp_2j_cube,
scipy_slsqp_3j_cube,
scipy_tnc_2j_cube,
scipy_tnc_3j_cube,
scipy_trustconstr_2j_cube,
scipy_trustconstr_3j_cube,
# scipy_trustexact_2j_cube,
# scipy_trustexact_3j_cube,
# scipy_trustkrylov_cube,
# scipy_trustncg_cube,
)
import tinytweaks as tt
BASELINE_OPTIMIZERS = [
another_random_cube,
nlopt_neldermead_cube,
quasirandom_cube,
]
SHGO_OPTIMIZERS = [
make_shgo(method="cobyla"),
make_shgo(method="slsqp"),
make_shgo(method="cobyla", mei=True),
make_shgo(method="slsqp", mei=True),
]
NOTWA_OPTIMIZERS = [
make_birect(deepness=38, longest=True, pruning=False),
make_mercury(13, isigma=tt.S3),
make_mercury(29, isigma=tt.S3),
make_soo(deepness=23, K=4),
make_soo(deepness=35, K=3),
make_soo(deepness=53, K=2),
]
def collect_everything():
G = globals().values()
λ = lambda G: [
g for g in G if callable(g) and getattr(g, "__name__", "").endswith("_cube")
]
_seen = {}
for thing in sum((λ(g) for g in G if type(g) is list), λ(G)):
key = thing.__name__
if key in _seen and _seen[key] is not thing:
pass # print(f"Ignored: seen twice: {key}", file=sys.stderr)
_seen[key] = thing
# return list(_seen.values())
return [v for k, v in sorted(_seen.items(), key=lambda t: t[0])]
FUCKING_EVERYTHING = collect_everything()
try:
from previous import PREVIOUSLY_POSITIVE, PREVIOUSLY_NEGATIVE
except ModuleNotFoundError:
PREVIOUSLY_POSITIVE, PREVIOUSLY_NEGATIVE = [], []
else:
g = {v.__name__: v for v in FUCKING_EVERYTHING} # globals()
def refind(stuff):
_temp = []
for opt in stuff:
_old_len = len(_temp)
if opt in g:
_temp.append(g[opt])
elif opt.startswith("ng_") or opt.startswith("ngx_"):
if opt.startswith("ng_"):
ngx = "ngx_" + opt.removeprefix("ng_")
else:
ngx = "ng_" + opt.removeprefix("ngx_") # whatever
if ngx in g:
_temp.append(g[ngx])
else:
for ng_opt in NEVERGRAD2_OPTIMIZERS:
if ng_opt.__name__ == opt or ng_opt.__name__ == ngx:
_temp.append(ng_opt)
if len(_temp) == _old_len:
# FIXME: this text is not necessarily for PREVIOUSLY_POSITIVE!
print(
f"Ignored: failed to find {opt} for PREVIOUSLY_POSITIVE",
file=sys.stderr,
)
return _temp
PREVIOUSLY_POSITIVE = refind(PREVIOUSLY_POSITIVE)
PREVIOUSLY_NEGATIVE = refind(PREVIOUSLY_NEGATIVE)
del g
for opt in (another_random_cube, quasirandom_cube):
if opt not in PREVIOUSLY_POSITIVE:
PREVIOUSLY_POSITIVE.append(opt)
for opt in (another_random_cube, quasirandom_cube):
if opt not in PREVIOUSLY_NEGATIVE:
PREVIOUSLY_NEGATIVE.append(opt)
try:
from elo_blacklist import blacklisted
except ModuleNotFoundError:
WHITELISTED_OPTIMIZERS = FUCKING_EVERYTHING.copy()
else:
WHITELISTED_OPTIMIZERS = [
opt
for opt in FUCKING_EVERYTHING
if opt.__name__.removesuffix("_cube") not in blacklisted
]
book_of_optimizers = dict(
baseline=BASELINE_OPTIMIZERS,
everything=FUCKING_EVERYTHING,
shgo=SHGO_OPTIMIZERS,
negative=PREVIOUSLY_NEGATIVE,
positive=PREVIOUSLY_POSITIVE,
whitelisted=WHITELISTED_OPTIMIZERS,
)