# -*- coding: utf-8 -*- from numpy import sum, cos, exp, pi, arange, sin from .go_benchmark import Benchmark class Langermann(Benchmark): r""" Langermann objective function. This class defines the Langermann [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Langermann}}(x) = - \sum_{i=1}^{5} \frac{c_i \cos\left\{\pi \left[\left(x_{1}- a_i\right)^{2} + \left(x_{2} - b_i \right)^{2}\right]\right\}}{e^{\frac{\left( x_{1} - a_i\right)^{2} + \left( x_{2} - b_i\right)^{2}}{\pi}}} Where: .. math:: \begin{matrix} a = [3, 5, 2, 1, 7]\\ b = [5, 2, 1, 4, 9]\\ c = [1, 2, 5, 2, 3] \\ \end{matrix} Here :math:`x_i \in [0, 10]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = -5.1621259` for :math:`x = [2.00299219, 1.006096]` .. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015 TODO: Langermann from Gavana is _not the same_ as Jamil #68. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([0.0] * self.N, [10.0] * self.N)) self.global_optimum = [[2.00299219, 1.006096]] self.fglob = -5.1621259 def fun(self, x, *args): self.nfev += 1 a = [3, 5, 2, 1, 7] b = [5, 2, 1, 4, 9] c = [1, 2, 5, 2, 3] return (-sum(c * exp(-(1 / pi) * ((x[0] - a) ** 2 + (x[1] - b) ** 2)) * cos(pi * ((x[0] - a) ** 2 + (x[1] - b) ** 2)))) class LennardJones(Benchmark): r""" LennardJones objective function. This class defines the Lennard-Jones global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{LennardJones}}(\mathbf{x}) = \sum_{i=0}^{n-2}\sum_{j>1}^{n-1} \frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^{6}} Where, in this exercise: .. math:: r_{ij} = \sqrt{(x_{3i}-x_{3j})^2 + (x_{3i+1}-x_{3j+1})^2) + (x_{3i+2}-x_{3j+2})^2} Valid for any dimension, :math:`n = 3*k, k=2 , 3, 4, ..., 20`. :math:`k` is the number of atoms in 3-D space constraints: unconstrained type: multi-modal with one global minimum; non-separable Value-to-reach: :math:`minima[k-2] + 0.0001`. See array of minima below; additional minima available at the Cambridge cluster database: http://www-wales.ch.cam.ac.uk/~jon/structures/LJ/tables.150.html Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-4, 4]` for :math:`i = 1 ,..., n`. *Global optimum*: .. math:: \text{minima} = [-1.,-3.,-6.,-9.103852,-12.712062,-16.505384,\\ -19.821489, -24.113360, -28.422532,-32.765970,\\ -37.967600,-44.326801, -47.845157,-52.322627,\\ -56.815742,-61.317995, -66.530949, -72.659782,\\ -77.1777043]\\ """ def __init__(self, dimensions=6): # dimensions is in [6:60] # max dimensions is going to be 60. if dimensions not in range(6, 61): raise ValueError("LJ dimensions must be in (6, 60)") Benchmark.__init__(self, dimensions) self._bounds = list(zip([-4.0] * self.N, [4.0] * self.N)) self.global_optimum = [[]] self.minima = [-1.0, -3.0, -6.0, -9.103852, -12.712062, -16.505384, -19.821489, -24.113360, -28.422532, -32.765970, -37.967600, -44.326801, -47.845157, -52.322627, -56.815742, -61.317995, -66.530949, -72.659782, -77.1777043] k = int(dimensions / 3) self.fglob = self.minima[k - 2] self.change_dimensionality = True def change_dimensions(self, ndim): if ndim not in range(6, 61): raise ValueError("LJ dimensions must be in (6, 60)") Benchmark.change_dimensions(self, ndim) self.fglob = self.minima[int(self.N / 3) - 2] def fun(self, x, *args): self.nfev += 1 k = int(self.N / 3) s = 0.0 for i in range(k - 1): for j in range(i + 1, k): a = 3 * i b = 3 * j xd = x[a] - x[b] yd = x[a + 1] - x[b + 1] zd = x[a + 2] - x[b + 2] ed = xd * xd + yd * yd + zd * zd ud = ed * ed * ed if ed > 0.0: s += (1.0 / ud - 2.0) / ud return s class Leon(Benchmark): r""" Leon objective function. This class defines the Leon [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Leon}}(\mathbf{x}) = \left(1 - x_{1}\right)^{2} + 100 \left(x_{2} - x_{1}^{2} \right)^{2} with :math:`x_i \in [-1.2, 1.2]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 1]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-1.2] * self.N, [1.2] * self.N)) self.global_optimum = [[1 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return 100. * (x[1] - x[0] ** 2.0) ** 2.0 + (1 - x[0]) ** 2.0 class Levy03(Benchmark): r""" Levy 3 objective function. This class defines the Levy 3 [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Levy03}}(\mathbf{x}) = \sin^2(\pi y_1)+\sum_{i=1}^{n-1}(y_i-1)^2[1+10\sin^2(\pi y_{i+1})]+(y_n-1)^2 Where, in this exercise: .. math:: y_i=1+\frac{x_i-1}{4} Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-10, 10]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,...,n` .. [1] Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005 TODO: not clear what the Levy function definition is. Gavana, Mishra, Adorio have different forms. Indeed Levy 3 docstring from Gavana disagrees with the Gavana code! The following code is from the Mishra listing of Levy08. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [[1 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 y = 1 + (x - 1) / 4 v = sum((y[:-1] - 1) ** 2 * (1 + 10 * sin(pi * y[1:]) ** 2)) z = (y[-1] - 1) ** 2 return sin(pi * y[0]) ** 2 + v + z class Levy05(Benchmark): r""" Levy 5 objective function. This class defines the Levy 5 [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Levy05}}(\mathbf{x}) = \sum_{i=1}^{5} i \cos \left[(i-1)x_1 + i \right] \times \sum_{j=1}^{5} j \cos \left[(j+1)x_2 + j \right] + (x_1 + 1.42513)^2 + (x_2 + 0.80032)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-10, 10]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = -176.1375779` for :math:`\mathbf{x} = [-1.30685, -1.42485]`. .. [1] Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005 """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N)) self.custom_bounds = ([-2.0, 2.0], [-2.0, 2.0]) self.global_optimum = [[-1.30685, -1.42485]] self.fglob = -176.1375779 def fun(self, x, *args): self.nfev += 1 i = arange(1, 6) a = i * cos((i - 1) * x[0] + i) b = i * cos((i + 1) * x[1] + i) return sum(a) * sum(b) + (x[0] + 1.42513) ** 2 + (x[1] + 0.80032) ** 2 class Levy13(Benchmark): r""" Levy13 objective function. This class defines the Levy13 [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Levy13}}(x) = \left(x_{1} -1\right)^{2} \left[\sin^{2} \left(3 \pi x_{2}\right) + 1\right] + \left(x_{2} - 1\right)^{2} \left[\sin^{2}\left(2 \pi x_{2}\right) + 1\right] + \sin^{2}\left(3 \pi x_{1}\right) with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 1]` .. [1] Mishra, S. Some new test functions for global optimization and performance of repulsive particle swarm method. Munich Personal RePEc Archive, 2006, 2718 """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [[1 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 u = sin(3 * pi * x[0]) ** 2 v = (x[0] - 1) ** 2 * (1 + (sin(3 * pi * x[1])) ** 2) w = (x[1] - 1) ** 2 * (1 + (sin(2 * pi * x[1])) ** 2) return u + v + w