from scipy.optimize import Bounds from unittest.mock import patch from utils import wrap_untrustworthy, final import numpy as np def _fix_logging(original_function): from functools import wraps @wraps(original_function) def wrapped_function(*args, **kwargs): with patch("logging.FileHandler"): # do not create a file on import import fcmaes.optimizer fcmaes.optimizer._logger = None return original_function(*args, **kwargs) return wrapped_function @_fix_logging def make_biteopt(depth=1): from fcmaes.optimizer import Bite_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) optim = Bite_cpp(max_evaluations=n_trials, M=depth) _xopt, _fopt, _feval_count = optim.minimize(_objective, bounds) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = f"fcmaes_biteopt_d{depth}" f.__name__ = name + "_cube" return f @_fix_logging def make_csma(isigma=3): from fcmaes.optimizer import Csma_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) optim = Csma_cpp(max_evaluations=n_trials) _xopt, _fopt, _feval_count = optim.minimize( _objective, bounds, sdevs=1 / isigma ) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = f"fcmaes_csma_is{isigma:02}" f.__name__ = name + "_cube" return f @_fix_logging def make_fcmaes(popsize=None): from fcmaes.optimizer import Cma_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) ps = int(4 + 3 * np.log(n_dim)) if popsize is None else popsize optim = Cma_cpp( max_evaluations=n_trials, popsize=ps, stop_hist=0.0, workers=1, delayed_update=False, ) _xopt, _fopt, _feval_count = optim.minimize(_objective, bounds, sdevs=1 / 3) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = "fcmaes_cma" name += f"_auto" if popsize is None else f"_ps{popsize}" f.__name__ = name + "_cube" return f @_fix_logging def make_crfmnes(popsize=None): from fcmaes.optimizer import Crfmnes_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) ps = int(4 + 3 * np.log(n_dim)) if popsize is None else popsize optim = Crfmnes_cpp(max_evaluations=n_trials, popsize=ps) _xopt, _fopt, _feval_count = optim.minimize(_objective, bounds, sdevs=1 / 3) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = "fcmaes_crfmnes" name += f"_auto" if popsize is None else f"_ps{popsize}" f.__name__ = name + "_cube" return f _broken = """ @_fix_logging def make_lde(popsize=None): from fcmaes.optimizer import LDe_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) optim = LDe_cpp(max_evaluations=n_trials, popsize=popsize) _xopt, _fopt, _feval_count = optim.minimize(_objective, bounds) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = "fcmaes_lde" name += f"_auto" if popsize is None else f"_ps{popsize}" f.__name__ = name + "_cube" return f """ @_fix_logging def make_da(local=True): from fcmaes.optimizer import Da_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) optim = Da_cpp(max_evaluations=n_trials, use_local_search=local) _xopt, _fopt, _feval_count = optim.minimize(_objective, bounds) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = "fcmaes_da" if local: name += "_local" f.__name__ = name + "_cube" return f @_fix_logging def make_gclde(popsize=None): from fcmaes.optimizer import GCLDE_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) optim = GCLDE_cpp(max_evaluations=n_trials, popsize=popsize) _xopt, _fopt, _feval_count = optim.minimize(_objective, bounds) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = "fcmaes_gclde" name += f"_auto" if popsize is None else f"_ps{popsize}" f.__name__ = name + "_cube" return f @_fix_logging def make_lclde(popsize=None): from fcmaes.optimizer import LCLDE_cpp def f(objective, n_trials, n_dim, with_count): _objective = wrap_untrustworthy(objective, n_trials) bounds = Bounds([0.0] * n_dim, [1.0] * n_dim) optim = LCLDE_cpp(max_evaluations=n_trials, popsize=popsize) _xopt, _fopt, _feval_count = optim.minimize(_objective, bounds) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = "fcmaes_lclde" name += f"_auto" if popsize is None else f"_ps{popsize}" f.__name__ = name + "_cube" return f