from utils import wrap_untrustworthy, check, final, ExhaustedTrialsError import numpy as np import scipy.optimize as scopt def make_scipy(method, *, jacobian=None, hessian=None): # does not include: # basinhopping, shgo assert method in ( "Nelder-Mead", "Powell", "CG", "BFGS", # "Newton-CG", "L-BFGS-B", "TNC", "COBYLA", "SLSQP", "trust-constr", # "dogleg", # "trust-ncg", # "trust-exact", # "trust-krylov", ), method def f(objective, n_trials, n_dim, with_count): prng = np.random.default_rng() _objective = wrap_untrustworthy( objective, n_trials, raising=True, bounding="sine" ) x0 = np.full(n_dim, 0.5) bounds = scopt.Bounds([0.0] * n_dim, [1.0] * n_dim) # jac = "cs" if method == "dogleg" else None # doesn't work jac = "2-point" if jacobian is None else jacobian hess = "2-point" if hessian is None else hessian # Alternatively, objects implementing the HessianUpdateStrategy interface # can be used to approximate the Hessian. Available quasi-Newton methods # implementing this interface are: BFGS; SR1. tol = None # 0.0 # options = dict(maxfun=n_trials) if method == "TNC" else dict(maxiter=n_trials) if method in ("BFGS", "CG", "COBYLA", "SLSQP", "trust-constr"): options = dict(maxiter=n_trials) elif method in ("Nelder-Mead", "Powell"): options = dict(maxfev=n_trials, maxiter=n_trials) elif method in ("L-BFGS-B", "TNC"): options = dict(maxfun=n_trials, maxiter=n_trials) else: options = dict(maxfun=n_trials, maxfev=n_trials, maxiter=n_trials) # silence some warnings: if method in ("Nelder-Mead", "Powell"): jac = None hess = None if method in ("COBYLA",): jac = None hess = None bounds = None if method in ("BFGS", "CG"): hess = None bounds = None if method in ("L-BFGS-B", "SLSQP", "TNC", "trust-constr"): hess = None checks = [] def check_evals(): evals = _objective(check) checks.append(evals) return evals < n_trials first_try = True while check_evals(): if not first_try: x0 = prng.uniform(size=n_dim) try: res = scopt.minimize( _objective, x0, method=method, jac=jac, hess=hess, bounds=bounds, tol=tol, options=options, ) except ExhaustedTrialsError: break else: # well, this is pointless. fopt, xopt, feval_count = res.fun, res.x, res.nfev # print("success:", res.success) # if not res.success and res.nfev < n_trials // 2: shut_up = ( method == "SLSQP" and res.message == "Inequality constraints incompatible" ) or ( res.message == "The maximum number of function evaluations is exceeded." ) if not shut_up and not res.success and res.nfev < n_trials // 3: print("", method, res, "", sep="\n") first_try = False # TODO: run without this, try to minimize number of attempts (i.e. list length) # if len(checks) >= 5: print(method, [b - a for a, b in zip(checks, checks[1:])]) fopt, xopt, feval_count = _objective(final) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) name = f"scipy_{method.replace('-', '').lower()}" if jacobian == "2-point": name += "_2j" elif jacobian == "3-point": name += "_3j" elif jacobian is not None: assert False, jacobian if hessian == "2-point": name += "_2h" elif hessian == "3-point": name += "_3h" elif hessian is not None: assert False, hessian f.__name__ = name + "_cube" return f def scipy_basinhopping_cube(objective, n_trials, n_dim, with_count): progress = 1e-2 # TODO: make configurable? # NOTE: could also callbacks to extract solutions instead of wrapping objective functions? def accept_bounded(x_new=None, x_old=None, f_new=None, f_old=None): return np.all(x_new >= 0.0) and np.all(x_new <= 1.0) def dummy_minimizer(fun, x0, args, **options): return scopt.OptimizeResult(x=x0, fun=fun(x0), success=True, nfev=1) x0 = np.full(n_dim, 0.5) res = scopt.basinhopping( objective, x0, minimizer_kwargs=dict(method=dummy_minimizer), accept_test=accept_bounded, disp=False, niter=n_trials, # TODO: try without any progress vars at all. T=progress, stepsize=progress / 2, ) fopt, xopt, feval_count = res.fun, res.x, res.nfev # print("success:", res.success) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) def scipy_direct_cube(objective, n_trials, n_dim, with_count): bounds = scopt.Bounds([0.0] * n_dim, [1.0] * n_dim) # TODO: try different values of eps. default 0.0001 res = scopt.direct( objective, bounds=bounds, maxfun=n_trials, maxiter=1_000_000, vol_tol=0, ) fopt, xopt, feval_count = res.fun, res.x, res.nfev # print("success:", res.success) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) def scipy_direct_l_cube(objective, n_trials, n_dim, with_count): bounds = scopt.Bounds([0.0] * n_dim, [1.0] * n_dim) # TODO: try different values of eps. default 0.0001 res = scopt.direct( objective, bounds=bounds, maxfun=n_trials, maxiter=1_000_000, vol_tol=0, locally_biased=True, len_tol=0.0, # only for locally_biased=True ) fopt, xopt, feval_count = res.fun, res.x, res.nfev # print("success:", res.success) return (fopt, xopt, feval_count) if with_count else (fopt, xopt) scipy_bfgs_2j_cube = make_scipy("BFGS", jacobian="2-point") scipy_bfgs_3j_cube = make_scipy("BFGS", jacobian="3-point") scipy_cg_2j_cube = make_scipy("CG", jacobian="2-point") scipy_cg_3j_cube = make_scipy("CG", jacobian="3-point") scipy_cobyla_cube = make_scipy("COBYLA") # scipy_dogleg_cube = make_scipy("dogleg") # ValueError: Jacobian is required for dogleg minimization scipy_lbfgsb_2j_cube = make_scipy("L-BFGS-B", jacobian="2-point") scipy_lbfgsb_3j_cube = make_scipy("L-BFGS-B", jacobian="3-point") scipy_neldermead_cube = make_scipy("Nelder-Mead") # scipy_newtoncg_cube = make_scipy("Newton-CG") # ValueError: Jacobian is required for Newton-CG method scipy_powell_cube = make_scipy("Powell") scipy_slsqp_2j_cube = make_scipy("SLSQP", jacobian="2-point") scipy_slsqp_3j_cube = make_scipy("SLSQP", jacobian="3-point") scipy_tnc_2j_cube = make_scipy("TNC", jacobian="2-point") scipy_tnc_3j_cube = make_scipy("TNC", jacobian="3-point") scipy_trustconstr_2j_cube = make_scipy("trust-constr", jacobian="2-point") scipy_trustconstr_3j_cube = make_scipy("trust-constr", jacobian="3-point") # scipy_trustexact_2j_cube = make_scipy("trust-exact", jacobian="2-point") # scipy_trustexact_3j_cube = make_scipy("trust-exact", jacobian="3-point") # scipy_trustkrylov_cube = make_scipy("trust-krylov") # ValueError: ('Jacobian is required for trust region ', 'exact minimization.') # scipy_trustncg_cube = make_scipy("trust-ncg") # ValueError: Jacobian is required for Newton-CG trust-region minimization