# i've separated numpy-dependent methods from the rest of the utils. from project import project from utils import AcquireForWriting, merge_summaries, feps, m33, m34, m93 import numpy as np def do_bounding(x, method="clip"): if method == "clip": x = np.clip(x, 0, 1) elif method == "proj": # projects x back into the unit hypercube, poorly. if any(x < 0) or any(x > 1): x = 2 * x - 1 x /= np.max(np.abs(x)) + feps x = (x + 1) / 2 assert all(x >= 0) and all(x <= 1), x elif method == "pro2": # a little more logical. # FIXME: we need a way to determine the previous (or center) x somehow? if any(x < 0) or any(x > 1): x = project(best_so_far[1], x, eps=feps) elif method == "prcl": # over-engineered clipping with projection-sliding. (yeah don't ask) # FIXME: we need a way to determine the previous (or center) x somehow? from bitten_snes import _project_with x = _project_with(x, old, np.array([[0.0, 1.0] * n_dim]), clipping=0.5) elif method == "tria": hp = np.pi / 2 x = np.abs(np.arcsin(np.sin(x * hp)) / hp) elif method == "sine": x = np.square(np.sin(0.5 * np.pi * x)) elif method == "ssin": x = np.square(np.sin(0.5 * np.pi * (np.arcsinh(x - 0.5) + 0.5))) elif method == "pycma": raise Exception("TODO: workaround this like pycma does.") # old ver or new ver? return x class OWrap: def __init__(self, objective, n_trials, frugal_percent=1.0, greedy_percent=2.0): self.feval_count = 0 self.best_so_far = None self.warning = None self.objective = objective self.n_trials = n_trials self.__name__ = objective.__name__ # for evolopy self.frugal_percent = float(frugal_percent) self.greedy_percent = float(greedy_percent) def __str__(self): return ( "" ) def __call__(self, x, *args, **kwargs): if getattr(x, "get_x", None): # zoopt x = x.get_x() if type(x) is list: # opytimizer x = np.array(x) if x.ndim == 2: # flatten column vectors assert x.shape[1] == 1, x.shape x = x.T[0] if not self.warning and (any(x < 0) or any(x > 1.00000001)): self.warning = "bounds" # assert False, x if not all(np.isfinite(x)): if not self.warning: m33("x is not finite (NaN or Inf or -Inf)") self.warning = "finite" x[~np.isfinite(x)] = 0.5 x = np.clip(x, 0, 1) # assert all(np.isfinite(x)), "x is not finite (NaN or Inf or -Inf)" fx = self.objective(x) assert np.isfinite(fx), "f(x) is not finite (NaN or Inf or -Inf)" self.feval_count += 1 if self.feval_count <= self.n_trials: if self.best_so_far is None or fx < self.best_so_far[0]: self.best_so_far = (fx, x) return float(fx) def finish(self, optimizer_name): if self.warning == "bounds": m33(f"{optimizer_name} did not abide to bounds") if self.warning == "finite": m33(f"{optimizer_name} passed a non-finite value") if self.feval_count >= self.n_trials * self.greedy_percent: m33(f"{optimizer_name} got greedy ({self.feval_count}>{self.n_trials})") # if self.feval_count <= self.n_trials * 0.95: if self.feval_count < self.n_trials * self.frugal_percent: m34(f"{optimizer_name} was frugal ({self.feval_count}<{self.n_trials})") return self.best_so_far @property def fopt(self): return None if self.best_so_far is None else self.best_so_far[0] @property def xopt(self): return None if self.best_so_far is None else self.best_so_far[1] class COWrap: def __init__(self, objective, *, optimizer, n_trials, n_dim, **kwargs): self._objective = objective self.optimizer = optimizer self.n_trials = n_trials self.n_dim = n_dim self.kwargs = kwargs self._dirty = False from pathlib import Path # self.cache_dir = Path("./cache") self.cache_dir = Path("~/thursday-cache").expanduser() self._cached_summaries = None self.reset_objective() def __str__(self): return ( "" ) def __name__(self): return str(getattr(self.ow.objective, "__name__", str(self.ow.objective))) def __call__(self, x, *args, **kwargs): assert not self._ran, "please run .finish() before continuing!" result = self.ow.__call__(x, *args, **kwargs) self._dirty = True return result @property def objective(self): return self._objective @objective.setter def objective(self, new_objective): # don't do this or it defeats the purpose: self._cached_summaries = None self._objective = new_objective self.reset_objective() @property def cache_name(self): opt_name = self.optimizer.__name__ return f"COWrap_d{self.n_dim:02}_n{self.n_trials:03}_{opt_name}" @property def cache_key(self): opt_name = self.optimizer.__name__ obj_name = self._objective.__name__ return f"{self.cache_name}_{obj_name}[{self._run}]" @property def cache_file(self): opt_name = self.optimizer.__name__ return self.cache_dir / f"{self.cache_name}.json" @property def cache_file_fucked(self): opt_name = self.optimizer.__name__ return self.cache_dir / f"{self.cache_name}_{opt_name}.json" @property # TODO: write a setter as well? def cached_summaries(self): if self._cached_summaries is not None: return self._cached_summaries from json import loads if not self.cache_dir.exists() or not ( self.cache_file.exists() or self.cache_file_fucked.exists() ): return {} # text = self.cache_file.read_text() # if not text: # return {} # summaries = loads(text) # self._cached_summaries = summaries all_summaries = [] for cf in (self.cache_file, self.cache_file_fucked): if cf.exists(): # at least one exists at this point... if text := cf.read_text(): # ...but not every file contains anything all_summaries.append(loads(text)) self._cached_summaries = merge_summaries(all_summaries) return self._cached_summaries def reset_objective(self): self._dirty = False self.ow = OWrap(self._objective, self.n_trials, **self.kwargs) self._check_cache() def _check_cache(self): # assert not self._dirty # useless for a private method self._run = 1 self._ran = False while self.cache_key in self.cached_summaries: self._run += 1 def cached(self, run): assert not self._dirty old_run = self._run self._run = run summary = self.cached_summaries.get(self.cache_key, None) self._run = old_run if summary is None: return None assert "fopt" in summary, summary assert "xopt" in summary, summary assert "duration" in summary, summary fopt = float(summary["fopt"]) xopt = np.array(summary["xopt"], np.float64) duration = float(summary["duration"]) return fopt, xopt def finish(self, opt_name=None): from json import dumps from time import time assert self._dirty self._ran = True if opt_name is not None and opt_name != self.optimizer.__name__: m93("Warning: opt_name mistmatch") assert self.ow.best_so_far is not None # fopt, xopt = self.ow.best_so_far fopt, xopt = self.ow.finish(self.optimizer.__name__) summary = dict( fopt=float(fopt), xopt=[float(x) for x in xopt], # duration=float(-1), # old, bad for uniqueness duration=float(-time()), ) with AcquireForWriting(self.cache_file) as fp: self._cached_summaries = None # force reload self._check_cache() # refresh ._run and thereby .cache_key summaries = self.cached_summaries summaries[self.cache_key] = summary text = dumps(summaries, separators=(",", ":")) fp.write_text(text) if self.cache_file_fucked.exists(): # safe to delete now that i've written and tested merge_summaries. self.cache_file_fucked.unlink() self._cached_summaries = None # force reload in case of other writes self.reset_objective() return fopt, xopt