add most scipy optimizers

This commit is contained in:
Connor Olding 2023-05-04 15:13:36 -07:00
parent 8ebd87e965
commit 7b64928b43
2 changed files with 235 additions and 0 deletions

View file

@ -1,6 +1,32 @@
from dlibcube2 import dlib_cube
from nloptcube2 import nlopt_neldermead_cube
from randomcube2 import another_random_cube, quasirandom_cube
from scipycube2 import (
scipy_basinhopping_cube,
scipy_bfgs_2j_cube,
scipy_bfgs_3j_cube,
scipy_cg_2j_cube,
scipy_cg_3j_cube,
scipy_cobyla_cube,
scipy_direct_cube,
scipy_direct_l_cube,
# scipy_dogleg_cube,
scipy_lbfgsb_2j_cube,
scipy_lbfgsb_3j_cube,
scipy_neldermead_cube,
# scipy_newtoncg_cube,
scipy_powell_cube,
scipy_slsqp_2j_cube,
scipy_slsqp_3j_cube,
scipy_tnc_2j_cube,
scipy_tnc_3j_cube,
scipy_trustconstr_2j_cube,
scipy_trustconstr_3j_cube,
# scipy_trustexact_2j_cube,
# scipy_trustexact_3j_cube,
# scipy_trustkrylov_cube,
# scipy_trustncg_cube,
)
BASELINE_OPTIMIZERS = [
another_random_cube,

209
scipycube2.py Normal file
View file

@ -0,0 +1,209 @@
from utils import wrap_untrustworthy, check, final, ExhaustedTrialsError
import numpy as np
import scipy.optimize as scopt
def make_scipy(method, *, jacobian=None, hessian=None):
# does not include:
# basinhopping, shgo
assert method in (
"Nelder-Mead",
"Powell",
"CG",
"BFGS",
# "Newton-CG",
"L-BFGS-B",
"TNC",
"COBYLA",
"SLSQP",
"trust-constr",
# "dogleg",
# "trust-ncg",
# "trust-exact",
# "trust-krylov",
), method
def f(objective, n_trials, n_dim, with_count):
prng = np.random.default_rng()
_objective = wrap_untrustworthy(
objective, n_trials, raising=True, bounding="sine"
)
x0 = np.full(n_dim, 0.5)
bounds = scopt.Bounds([0.0] * n_dim, [1.0] * n_dim)
# jac = "cs" if method == "dogleg" else None # doesn't work
jac = "2-point" if jacobian is None else jacobian
hess = "2-point" if hessian is None else hessian
# Alternatively, objects implementing the HessianUpdateStrategy interface
# can be used to approximate the Hessian. Available quasi-Newton methods
# implementing this interface are: BFGS; SR1.
tol = None # 0.0
# options = dict(maxfun=n_trials) if method == "TNC" else dict(maxiter=n_trials)
if method in ("BFGS", "CG", "COBYLA", "SLSQP", "trust-constr"):
options = dict(maxiter=n_trials)
elif method in ("Nelder-Mead", "Powell"):
options = dict(maxfev=n_trials, maxiter=n_trials)
elif method in ("L-BFGS-B", "TNC"):
options = dict(maxfun=n_trials, maxiter=n_trials)
else:
options = dict(maxfun=n_trials, maxfev=n_trials, maxiter=n_trials)
# silence some warnings:
if method in ("Nelder-Mead", "Powell"):
jac = None
hess = None
if method in ("COBYLA",):
jac = None
hess = None
bounds = None
if method in ("BFGS", "CG"):
hess = None
bounds = None
if method in ("L-BFGS-B", "SLSQP", "TNC", "trust-constr"):
hess = None
checks = []
def check_evals():
evals = _objective(check)
checks.append(evals)
return evals < n_trials
first_try = True
while check_evals():
if not first_try:
x0 = prng.uniform(size=n_dim)
try:
res = scopt.minimize(
_objective,
x0,
method=method,
jac=jac,
hess=hess,
bounds=bounds,
tol=tol,
options=options,
)
except ExhaustedTrialsError:
break
else:
# well, this is pointless.
fopt, xopt, feval_count = res.fun, res.x, res.nfev
# print("success:", res.success)
# if not res.success and res.nfev < n_trials // 2:
shut_up = (
method == "SLSQP"
and res.message == "Inequality constraints incompatible"
) or (
res.message
== "The maximum number of function evaluations is exceeded."
)
if not shut_up and not res.success and res.nfev < n_trials // 3:
print("", method, res, "", sep="\n")
first_try = False
# TODO: run without this, try to minimize number of attempts (i.e. list length)
# if len(checks) >= 5: print(method, [b - a for a, b in zip(checks, checks[1:])])
fopt, xopt, feval_count = _objective(final)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
name = f"scipy_{method.replace('-', '').lower()}"
if jacobian == "2-point":
name += "_2j"
elif jacobian == "3-point":
name += "_3j"
elif jacobian is not None:
assert False, jacobian
if hessian == "2-point":
name += "_2h"
elif hessian == "3-point":
name += "_3h"
elif hessian is not None:
assert False, hessian
f.__name__ = name + "_cube"
return f
def scipy_basinhopping_cube(objective, n_trials, n_dim, with_count):
progress = 1e-2 # TODO: make configurable?
# NOTE: could also callbacks to extract solutions instead of wrapping objective functions?
def accept_bounded(x_new=None, x_old=None, f_new=None, f_old=None):
return np.all(x_new >= 0.0) and np.all(x_new <= 1.0)
def dummy_minimizer(fun, x0, args, **options):
return scopt.OptimizeResult(x=x0, fun=fun(x0), success=True, nfev=1)
x0 = np.full(n_dim, 0.5)
res = scopt.basinhopping(
objective,
x0,
minimizer_kwargs=dict(method=dummy_minimizer),
accept_test=accept_bounded,
disp=False,
niter=n_trials,
# TODO: try without any progress vars at all.
T=progress,
stepsize=progress / 2,
)
fopt, xopt, feval_count = res.fun, res.x, res.nfev
# print("success:", res.success)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
def scipy_direct_cube(objective, n_trials, n_dim, with_count):
bounds = scopt.Bounds([0.0] * n_dim, [1.0] * n_dim)
# TODO: try different values of eps. default 0.0001
res = scopt.direct(
objective,
bounds=bounds,
maxfun=n_trials,
maxiter=1_000_000,
vol_tol=0,
)
fopt, xopt, feval_count = res.fun, res.x, res.nfev
# print("success:", res.success)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
def scipy_direct_l_cube(objective, n_trials, n_dim, with_count):
bounds = scopt.Bounds([0.0] * n_dim, [1.0] * n_dim)
# TODO: try different values of eps. default 0.0001
res = scopt.direct(
objective,
bounds=bounds,
maxfun=n_trials,
maxiter=1_000_000,
vol_tol=0,
locally_biased=True,
len_tol=0.0, # only for locally_biased=True
)
fopt, xopt, feval_count = res.fun, res.x, res.nfev
# print("success:", res.success)
return (fopt, xopt, feval_count) if with_count else (fopt, xopt)
scipy_bfgs_2j_cube = make_scipy("BFGS", jacobian="2-point")
scipy_bfgs_3j_cube = make_scipy("BFGS", jacobian="3-point")
scipy_cg_2j_cube = make_scipy("CG", jacobian="2-point")
scipy_cg_3j_cube = make_scipy("CG", jacobian="3-point")
scipy_cobyla_cube = make_scipy("COBYLA")
# scipy_dogleg_cube = make_scipy("dogleg") # ValueError: Jacobian is required for dogleg minimization
scipy_lbfgsb_2j_cube = make_scipy("L-BFGS-B", jacobian="2-point")
scipy_lbfgsb_3j_cube = make_scipy("L-BFGS-B", jacobian="3-point")
scipy_neldermead_cube = make_scipy("Nelder-Mead")
# scipy_newtoncg_cube = make_scipy("Newton-CG") # ValueError: Jacobian is required for Newton-CG method
scipy_powell_cube = make_scipy("Powell")
scipy_slsqp_2j_cube = make_scipy("SLSQP", jacobian="2-point")
scipy_slsqp_3j_cube = make_scipy("SLSQP", jacobian="3-point")
scipy_tnc_2j_cube = make_scipy("TNC", jacobian="2-point")
scipy_tnc_3j_cube = make_scipy("TNC", jacobian="3-point")
scipy_trustconstr_2j_cube = make_scipy("trust-constr", jacobian="2-point")
scipy_trustconstr_3j_cube = make_scipy("trust-constr", jacobian="3-point")
# scipy_trustexact_2j_cube = make_scipy("trust-exact", jacobian="2-point")
# scipy_trustexact_3j_cube = make_scipy("trust-exact", jacobian="3-point")
# scipy_trustkrylov_cube = make_scipy("trust-krylov") # ValueError: ('Jacobian is required for trust region ', 'exact minimization.')
# scipy_trustncg_cube = make_scipy("trust-ncg") # ValueError: Jacobian is required for Newton-CG trust-region minimization