thursday/go_benchmark_functions/go_funcs_F.py

45 lines
1.3 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
from .go_benchmark import Benchmark
class FreudensteinRoth(Benchmark):
r"""
FreudensteinRoth objective function.
This class defines the Freudenstein & Roth [1]_ global optimization problem.
This is a multimodal minimization problem defined as follows:
.. math::
f_{\text{FreudensteinRoth}}(x) = \left\{x_1 - 13 + \left[(5 - x_2) x_2
- 2 \right] x_2 \right\}^2 + \left \{x_1 - 29
+ \left[(x_2 + 1) x_2 - 14 \right] x_2 \right\}^2
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [5, 4]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
self.custom_bounds = [(-3, 3), (-5, 5)]
self.global_optimum = [[5.0, 4.0]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
f1 = (-13.0 + x[0] + ((5.0 - x[1]) * x[1] - 2.0) * x[1]) ** 2
f2 = (-29.0 + x[0] + ((x[1] + 1.0) * x[1] - 14.0) * x[1]) ** 2
return f1 + f2