thursday/go_benchmark_functions/go_funcs_T.py

390 lines
12 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
from numpy import abs, asarray, cos, exp, arange, pi, sin, sum, atleast_2d
from .go_benchmark import Benchmark
class TestTubeHolder(Benchmark):
r"""
TestTubeHolder objective function.
This class defines the TestTubeHolder [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{TestTubeHolder}}(x) = - 4 \left | {e^{\left|{\cos
\left(\frac{1}{200} x_{1}^{2} + \frac{1}{200} x_{2}^{2}\right)}
\right|}\sin\left(x_{1}\right) \cos\left(x_{2}\right)}\right|
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = -10.872299901558` for
:math:`x= [-\pi/2, 0]`
.. [1] Mishra, S. Global Optimization by Differential Evolution and
Particle Swarm Methods: Evaluation on Some Benchmark Functions.
Munich Personal RePEc Archive, 2006, 1005
TODO Jamil#148 has got incorrect equation, missing an abs around the square
brackets
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
self.global_optimum = [[-pi / 2, 0.0]]
self.fglob = -10.87229990155800
def fun(self, x, *args):
self.nfev += 1
u = sin(x[0]) * cos(x[1])
v = (x[0] ** 2 + x[1] ** 2) / 200
return -4 * abs(u * exp(abs(cos(v))))
class Thurber(Benchmark):
r"""
Thurber [1]_ objective function.
.. [1] https://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml
"""
def __init__(self, dimensions=7):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip(
[500., 500., 100., 10., 0.1, 0.1, 0.],
[2000., 2000., 1000., 150., 2., 1., 0.2]))
self.global_optimum = [[1.288139680e3, 1.4910792535e3, 5.8323836877e2,
75.416644291, 0.96629502864, 0.39797285797,
4.9727297349e-2]]
self.fglob = 5642.7082397
self.a = asarray([80.574, 84.248, 87.264, 87.195, 89.076, 89.608,
89.868, 90.101, 92.405, 95.854, 100.696, 101.06,
401.672, 390.724, 567.534, 635.316, 733.054, 759.087,
894.206, 990.785, 1090.109, 1080.914, 1122.643,
1178.351, 1260.531, 1273.514, 1288.339, 1327.543,
1353.863, 1414.509, 1425.208, 1421.384, 1442.962,
1464.350, 1468.705, 1447.894, 1457.628])
self.b = asarray([-3.067, -2.981, -2.921, -2.912, -2.840, -2.797,
-2.702, -2.699, -2.633, -2.481, -2.363, -2.322,
-1.501, -1.460, -1.274, -1.212, -1.100, -1.046,
-0.915, -0.714, -0.566, -0.545, -0.400, -0.309,
-0.109, -0.103, 0.010, 0.119, 0.377, 0.790, 0.963,
1.006, 1.115, 1.572, 1.841, 2.047, 2.200])
def fun(self, x, *args):
self.nfev += 1
vec = x[0] + x[1] * self.b + x[2] * self.b ** 2 + x[3] * self.b ** 3
vec /= 1 + x[4] * self.b + x[5] * self.b ** 2 + x[6] * self.b ** 3
return sum((self.a - vec) ** 2)
class Treccani(Benchmark):
r"""
Treccani objective function.
This class defines the Treccani [1]_ global optimization problem. This is a
multimodal minimization problem defined as follows:
.. math::
f_{\text{Treccani}}(x) = x_1^4 + 4x_1^3 + 4x_1^2 + x_2^2
with :math:`x_i \in
[-5, 5]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [-2, 0]` or
:math:`x = [0, 0]`.
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-5.0] * self.N, [5.0] * self.N))
self.custom_bounds = [(-2, 2), (-2, 2)]
self.global_optimum = [[-2.0, 0.0]]
self.fglob = 0
def fun(self, x, *args):
self.nfev += 1
return x[0] ** 4 + 4.0 * x[0] ** 3 + 4.0 * x[0] ** 2 + x[1] ** 2
class Trefethen(Benchmark):
r"""
Trefethen objective function.
This class defines the Trefethen [1]_ global optimization problem. This is a
multimodal minimization problem defined as follows:
.. math::
f_{\text{Trefethen}}(x) = 0.25 x_{1}^{2} + 0.25 x_{2}^{2}
+ e^{\sin\left(50 x_{1}\right)}
- \sin\left(10 x_{1} + 10 x_{2}\right)
+ \sin\left(60 e^{x_{2}}\right)
+ \sin\left[70 \sin\left(x_{1}\right)\right]
+ \sin\left[\sin\left(80 x_{2}\right)\right]
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = -3.3068686474` for
:math:`x = [-0.02440307923, 0.2106124261]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
self.custom_bounds = [(-5, 5), (-5, 5)]
self.global_optimum = [[-0.02440307923, 0.2106124261]]
self.fglob = -3.3068686474
def fun(self, x, *args):
self.nfev += 1
val = 0.25 * x[0] ** 2 + 0.25 * x[1] ** 2
val += exp(sin(50. * x[0])) - sin(10 * x[0] + 10 * x[1])
val += sin(60 * exp(x[1]))
val += sin(70 * sin(x[0]))
val += sin(sin(80 * x[1]))
return val
class ThreeHumpCamel(Benchmark):
r"""
Three Hump Camel objective function.
This class defines the Three Hump Camel [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{ThreeHumpCamel}}(x) = 2x_1^2 - 1.05x_1^4 + \frac{x_1^6}{6}
+ x_1x_2 + x_2^2
with :math:`x_i \in [-5, 5]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [0, 0]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-5.0] * self.N, [5.0] * self.N))
self.custom_bounds = [(-2, 2), (-1.5, 1.5)]
self.global_optimum = [[0.0, 0.0]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
return (2.0 * x[0] ** 2.0 - 1.05 * x[0] ** 4.0 + x[0] ** 6 / 6.0
+ x[0] * x[1] + x[1] ** 2.0)
class Trid(Benchmark):
r"""
Trid objective function.
This class defines the Trid [1]_ global optimization problem. This is a
multimodal minimization problem defined as follows:
.. math::
f_{\text{Trid}}(x) = \sum_{i=1}^{n} (x_i - 1)^2
- \sum_{i=2}^{n} x_i x_{i-1}
Here, :math:`n` represents the number of dimensions and
:math:`x_i \in [-20, 20]` for :math:`i = 1, ..., 6`.
*Global optimum*: :math:`f(x) = -50` for :math:`x = [6, 10, 12, 12, 10, 6]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO Jamil#150, starting index of second summation term should be 2.
"""
def __init__(self, dimensions=6):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-20.0] * self.N, [20.0] * self.N))
self.global_optimum = [[6, 10, 12, 12, 10, 6]]
self.fglob = -50.0
self.change_dimensionality = True
def fun(self, x, *args):
self.nfev += 1
return sum((x - 1.0) ** 2.0) - sum(x[1:] * x[:-1])
class Trigonometric01(Benchmark):
r"""
Trigonometric 1 objective function.
This class defines the Trigonometric 1 [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{Trigonometric01}}(x) = \sum_{i=1}^{n} \left [n -
\sum_{j=1}^{n} \cos(x_j)
+ i \left(1 - cos(x_i)
- sin(x_i) \right ) \right]^2
Here, :math:`n` represents the number of dimensions and
:math:`x_i \in [0, \pi]` for :math:`i = 1, ..., n`.
*Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for
:math:`i = 1, ..., n`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
TODO: equaiton uncertain here. Is it just supposed to be the cos term
in the inner sum, or the whole of the second line in Jamil #153.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([0.0] * self.N, [pi] * self.N))
self.global_optimum = [[0.0 for _ in range(self.N)]]
self.fglob = 0.0
self.change_dimensionality = True
def fun(self, x, *args):
self.nfev += 1
i = atleast_2d(arange(1.0, self.N + 1)).T
inner = cos(x) + i * (1 - cos(x) - sin(x))
return sum((self.N - sum(inner, axis=1)) ** 2)
class Trigonometric02(Benchmark):
r"""
Trigonometric 2 objective function.
This class defines the Trigonometric 2 [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{Trigonometric2}}(x) = 1 + \sum_{i=1}^{n} 8 \sin^2
\left[7(x_i - 0.9)^2 \right]
+ 6 \sin^2 \left[14(x_i - 0.9)^2 \right]
+ (x_i - 0.9)^2
Here, :math:`n` represents the number of dimensions and
:math:`x_i \in [-500, 500]` for :math:`i = 1, ..., n`.
*Global optimum*: :math:`f(x) = 1` for :math:`x_i = 0.9` for
:math:`i = 1, ..., n`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-500.0] * self.N,
[500.0] * self.N))
self.custom_bounds = [(0, 2), (0, 2)]
self.global_optimum = [[0.9 for _ in range(self.N)]]
self.fglob = 1.0
self.change_dimensionality = True
def fun(self, x, *args):
self.nfev += 1
vec = (8 * sin(7 * (x - 0.9) ** 2) ** 2
+ 6 * sin(14 * (x - 0.9) ** 2) ** 2
+ (x - 0.9) ** 2)
return 1.0 + sum(vec)
class Tripod(Benchmark):
r"""
Tripod objective function.
This class defines the Tripod [1]_ global optimization problem. This
is a multimodal minimization problem defined as follows:
.. math::
f_{\text{Tripod}}(x) = p(x_2) \left[1 + p(x_1) \right] +
\lvert x_1 + 50p(x_2) \left[1 - 2p(x_1) \right]
\rvert + \lvert x_2 + 50\left[1 - 2p(x_2)\right]
\rvert
with :math:`x_i \in [-100, 100]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = 0` for :math:`x = [0, -50]`
.. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions
For Global Optimization Problems Int. Journal of Mathematical Modelling
and Numerical Optimisation, 2013, 4, 150-194.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-100.0] * self.N,
[100.0] * self.N))
self.global_optimum = [[0.0, -50.0]]
self.fglob = 0.0
def fun(self, x, *args):
self.nfev += 1
p1 = float(x[0] >= 0)
p2 = float(x[1] >= 0)
return (p2 * (1.0 + p1) + abs(x[0] + 50.0 * p2 * (1.0 - 2.0 * p1))
+ abs(x[1] + 50.0 * (1.0 - 2.0 * p2)))