thursday/go_benchmark_functions/go_funcs_N.py

150 lines
4 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
from numpy import cos, sqrt, sin, abs
from .go_benchmark import Benchmark
class NeedleEye(Benchmark):
r"""
NeedleEye objective function.
This class defines the Needle-Eye [1]_ global optimization problem. This is a
a multimodal minimization problem defined as follows:
.. math::
f_{\text{NeedleEye}}(x) =
\begin{cases}
1 & \textrm{if }\hspace{5pt} \lvert x_i \rvert < eye \hspace{5pt}
\forall i \\
\sum_{i=1}^n (100 + \lvert x_i \rvert) & \textrm{if } \hspace{5pt}
\lvert x_i \rvert > eye \\
0 & \textrm{otherwise}\\
\end{cases}
Where, in this exercise, :math:`eye = 0.0001`.
Here, :math:`n` represents the number of dimensions and
:math:`x_i \in [-10, 10]` for :math:`i = 1, ..., n`.
*Global optimum*: :math:`f(x) = 1` for :math:`x_i = 0` for
:math:`i = 1, ..., n`
.. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
self.global_optimum = [[0.0 for _ in range(self.N)]]
self.fglob = 1.0
self.change_dimensionality = True
def fun(self, x, *args):
self.nfev += 1
f = fp = 0.0
eye = 0.0001
for val in x:
if abs(val) >= eye:
fp = 1.0
f += 100.0 + abs(val)
else:
f += 1.0
if fp < 1e-6:
f = f / self.N
return f
class NewFunction01(Benchmark):
r"""
NewFunction01 objective function.
This class defines the NewFunction01 [1]_ global optimization problem. This is a
multimodal minimization problem defined as follows:
.. math::
f_{\text{NewFunction01}}(x) = \left | {\cos\left(\sqrt{\left|{x_{1}^{2}
+ x_{2}}\right|}\right)} \right |^{0.5} + (x_{1} + x_{2})/100
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = -0.18459899925` for
:math:`x = [-8.46669057, -9.99982177]`
.. [1] Mishra, S. Global Optimization by Differential Evolution and
Particle Swarm Methods: Evaluation on Some Benchmark Functions.
Munich Personal RePEc Archive, 2006, 1005
TODO line 355
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
self.global_optimum = [[-8.46668984648, -9.99980944557]]
self.fglob = -0.184648852475
def fun(self, x, *args):
self.nfev += 1
return ((abs(cos(sqrt(abs(x[0] ** 2 + x[1]))))) ** 0.5
+ 0.01 * (x[0] + x[1]))
class NewFunction02(Benchmark):
r"""
NewFunction02 objective function.
This class defines the NewFunction02 global optimization problem. This is a
multimodal minimization problem defined as follows:
.. math::
f_{\text{NewFunction02}}(x) = \left | {\sin\left(\sqrt{\lvert{x_{1}^{2}
+ x_{2}}\rvert}\right)} \right |^{0.5} + (x_{1} + x_{2})/100
with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`.
*Global optimum*: :math:`f(x) = -0.19933159253` for
:math:`x = [-9.94103375, -9.99771235]`
.. [1] Mishra, S. Global Optimization by Differential Evolution and
Particle Swarm Methods: Evaluation on Some Benchmark Functions.
Munich Personal RePEc Archive, 2006, 1005
TODO Line 368
TODO WARNING, minimum value is estimated from running many optimisations and
choosing the best.
"""
def __init__(self, dimensions=2):
Benchmark.__init__(self, dimensions)
self._bounds = list(zip([-10.0] * self.N, [10.0] * self.N))
self.global_optimum = [[-9.94114736324, -9.99997128772]]
self.fglob = -0.199409030092
def fun(self, x, *args):
self.nfev += 1
return ((abs(sin(sqrt(abs(x[0] ** 2 + x[1]))))) ** 0.5
+ 0.01 * (x[0] + x[1]))
#Newfunction 3 from Gavana is entered as Mishra05.