1339 lines
44 KiB
Python
Executable file
1339 lines
44 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
|
|
# external packages required for full functionality:
|
|
# numpy scipy h5py sklearn dotmap
|
|
|
|
# BIG TODO: ensure numpy isn't upcasting to float64 *anywhere*.
|
|
# this is gonna take some work.
|
|
|
|
from onn_core import *
|
|
from onn_core import _check, _f, _0, _1
|
|
|
|
import sys
|
|
|
|
_log_was_update = False
|
|
def log(left, right, update=False):
|
|
s = "\x1B[1m {:>20}:\x1B[0m {}".format(left, right)
|
|
global _log_was_update
|
|
if update and _log_was_update:
|
|
lament('\x1B[F' + s)
|
|
else:
|
|
lament(s)
|
|
_log_was_update = update
|
|
|
|
class Dummy:
|
|
pass
|
|
|
|
# Math Utilities {{{1
|
|
|
|
def rolling(a, window):
|
|
# http://stackoverflow.com/a/4924433
|
|
shape = (a.size - window + 1, window)
|
|
strides = (a.itemsize, a.itemsize)
|
|
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
|
|
|
|
def rolling_batch(a, window):
|
|
# same as rolling, but acts on each batch (axis 0).
|
|
shape = (a.shape[0], a.shape[-1] - window + 1, window)
|
|
strides = (np.prod(a.shape[1:]) * a.itemsize, a.itemsize, a.itemsize)
|
|
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
|
|
|
|
# Initializations {{{1
|
|
|
|
def init_gaussian_unit(size, ins, outs):
|
|
s = np.sqrt(1 / ins)
|
|
return np.random.normal(0, s, size=size)
|
|
|
|
# Loss functions {{{1
|
|
|
|
class SomethingElse(ResidualLoss):
|
|
# generalizes Absolute and SquaredHalved.
|
|
# plot: https://www.desmos.com/calculator/fagjg9vuz7
|
|
def __init__(self, a=4/3):
|
|
assert 1 <= a <= 2, "parameter out of range"
|
|
self.a = _f(a / 2)
|
|
self.b = _f(2 / a)
|
|
self.c = _f(2 / a - 1)
|
|
|
|
def f(self, r):
|
|
return self.a * np.abs(r)**self.b
|
|
|
|
def df(self, r):
|
|
return np.sign(r) * np.abs(r)**self.c
|
|
|
|
class Confidence(Loss):
|
|
# this isn't "confidence" in any meaningful way; (e.g. Bayesian)
|
|
# it's just a metric of how large the value is of the predicted class.
|
|
# when using it for loss, it acts like a crappy regularizer.
|
|
# it really just measures how much of a hot-shot the network thinks it is.
|
|
|
|
def forward(self, p, y=None):
|
|
categories = p.shape[-1]
|
|
confidence = (np.max(p, axis=-1) - 1/categories) / (1 - 1/categories)
|
|
# the exponent in softmax puts a maximum on confidence,
|
|
# but we don't compensate for that. if necessary,
|
|
# it'd be better to use an activation that doesn't have this limit.
|
|
return np.mean(confidence)
|
|
|
|
def backward(self, p, y=None):
|
|
# in order to agree with the forward pass,
|
|
# using this backwards pass as-is will minimize confidence.
|
|
categories = p.shape[-1]
|
|
detc = p / categories / (1 - 1/categories)
|
|
dmax = p == np.max(p, axis=-1, keepdims=True)
|
|
return detc * dmax
|
|
|
|
class NLL(Loss): # Negative Log Likelihood
|
|
def forward(self, p, y):
|
|
correct = p * y
|
|
return np.mean(-correct)
|
|
|
|
def backward(self, p, y):
|
|
return -y / len(p)
|
|
|
|
# Regularizers {{{1
|
|
|
|
class SaturateRelu(Regularizer):
|
|
# paper: https://arxiv.org/abs/1703.09202
|
|
# TODO: test this (and ActivityRegularizer) more thoroughly.
|
|
# i've looked at the histogram of the resulting weights.
|
|
# it seems like only the layers after this are affected
|
|
# the way they should be.
|
|
|
|
def __init__(self, lamb=0.0):
|
|
self.lamb = _f(lamb)
|
|
|
|
def forward(self, X):
|
|
return self.lamb * np.where(X >= 0, X, 0)
|
|
|
|
def backward(self, X):
|
|
return self.lamb * np.where(X >= 0, 1, 0)
|
|
|
|
# Optimizers {{{1
|
|
|
|
class FTML(Optimizer):
|
|
# paper: http://www.cse.ust.hk/~szhengac/papers/icml17.pdf
|
|
# author's implementation: https://github.com/szhengac/optim/commit/923555e
|
|
|
|
def __init__(self, lr=0.0025, b1=0.6, b2=0.999, eps=1e-8):
|
|
self.iterations = _0
|
|
self.b1 = _f(b1) # decay term
|
|
self.b2 = _f(b2) # decay term
|
|
self.eps = _f(eps)
|
|
|
|
super().__init__(lr)
|
|
|
|
def reset(self):
|
|
self.dt1 = None
|
|
self.dt = None
|
|
self.vt = None
|
|
self.zt = None
|
|
self.b1_t = _1
|
|
self.b2_t = _1
|
|
|
|
def compute(self, dW, W):
|
|
if self.dt1 is None: self.dt1 = np.zeros_like(dW)
|
|
if self.dt is None: self.dt = np.zeros_like(dW)
|
|
if self.vt is None: self.vt = np.zeros_like(dW)
|
|
if self.zt is None: self.zt = np.zeros_like(dW)
|
|
|
|
# NOTE: we could probably rewrite these equations to avoid this copy.
|
|
self.dt1[:] = self.dt[:]
|
|
|
|
self.b1_t *= self.b1
|
|
self.b2_t *= self.b2
|
|
|
|
# hardly an elegant solution.
|
|
lr = max(self.lr, self.eps)
|
|
|
|
# same as Adam's vt.
|
|
self.vt[:] = self.b2 * self.vt + (1 - self.b2) * dW * dW
|
|
|
|
# you can factor out "inner" out of Adam as well.
|
|
inner = np.sqrt(self.vt / (1 - self.b2_t)) + self.eps
|
|
self.dt[:] = (1 - self.b1_t) / lr * inner
|
|
|
|
sigma_t = self.dt - self.b1 * self.dt1
|
|
|
|
# Adam's mt minus the sigma term.
|
|
self.zt[:] = self.b1 * self.zt + (1 - self.b1) * dW - sigma_t * W
|
|
|
|
# subtract by weights to avoid having to override self.update.
|
|
return -self.zt / self.dt - W
|
|
|
|
class MomentumClip(Optimizer):
|
|
def __init__(self, lr=0.01, mu=0.9, nesterov=False, clip=1.0, debug=False):
|
|
self.mu = _f(mu)
|
|
self.clip = _f(clip)
|
|
self.nesterov = bool(nesterov)
|
|
self.debug = bool(debug)
|
|
|
|
super().__init__(lr)
|
|
|
|
def reset(self):
|
|
self.accum = None
|
|
|
|
def compute(self, dW, W):
|
|
if self.accum is None:
|
|
self.accum = np.zeros_like(dW)
|
|
|
|
total_norm = np.linalg.norm(dW)
|
|
clip_scale = self.clip / (total_norm + 1e-6)
|
|
if clip_scale < 1:
|
|
if self.debug:
|
|
lament("clipping gradients; norm: {:10.5f}".format(total_norm))
|
|
dW *= clip_scale
|
|
|
|
self.accum[:] = self.accum * self.mu + dW
|
|
if self.nesterov:
|
|
return -self.lr * (self.accum * self.mu + dW)
|
|
else:
|
|
return -self.lr * self.accum
|
|
|
|
class YellowFin(Optimizer):
|
|
# paper: https://arxiv.org/abs/1706.03471
|
|
# knowyourmeme: http://cs.stanford.edu/~zjian/project/YellowFin/
|
|
# author's implementation: https://github.com/JianGoForIt/YellowFin/blob/master/tuner_utils/yellowfin.py
|
|
# code lifted: https://gist.github.com/botev/f8b32c00eafee222e47393f7f0747666
|
|
|
|
def __init__(self, lr=0.1, mu=0.0, beta=0.999, window_size=20,
|
|
debias=True, clip=1.0):
|
|
self.lr_default = _f(lr)
|
|
self.mu_default = _f(mu)
|
|
self.beta = _f(beta)
|
|
self.window_size = int(window_size) # curv_win_width
|
|
self.debias_enabled = bool(debias)
|
|
self.clip = _f(clip)
|
|
|
|
self.mu = _f(mu) # momentum
|
|
super().__init__(lr)
|
|
|
|
def reset(self):
|
|
self.accum = None
|
|
|
|
self.lr = self.lr_default
|
|
self.mu = self.mu_default
|
|
|
|
self.step = 0
|
|
self.beta_t = self.beta
|
|
|
|
self.curv_win = np.zeros([self.window_size,], dtype=np.float32)
|
|
|
|
self.h_min = None
|
|
self.h_max = None
|
|
|
|
self.g_lpf = 0
|
|
#self.g_squared_lpf = 0
|
|
self.g_norm_squared_lpf = 0
|
|
self.g_norm_lpf = 0
|
|
self.h_min_lpf = 0
|
|
self.h_max_lpf = 0
|
|
self.dist_lpf = 0
|
|
self.lr_lpf = 0
|
|
self.mu_lpf = 0
|
|
|
|
def get_lr_mu(self):
|
|
p = (np.square(self.dist_avg) * np.square(self.h_min)) / (2 * self.g_var)
|
|
w3 = p * (np.sqrt(0.25 + p / 27.0) - 0.5)
|
|
w = np.power(w3, 1/3)
|
|
y = w - p / (3 * w)
|
|
sqrt_mu1 = y + 1
|
|
|
|
sqrt_h_min = np.sqrt(self.h_min)
|
|
sqrt_h_max = np.sqrt(self.h_max)
|
|
sqrt_mu2 = (sqrt_h_max - sqrt_h_min) / (sqrt_h_max + sqrt_h_min)
|
|
|
|
sqrt_mu = max(sqrt_mu1, sqrt_mu2)
|
|
if sqrt_mu2 > sqrt_mu1:
|
|
print('note: taking dr calculation. something may have exploded.')
|
|
|
|
lr = np.square(1 - sqrt_mu) / self.h_min
|
|
mu = np.square(sqrt_mu)
|
|
return lr, mu
|
|
|
|
def compute(self, dW, W):
|
|
if self.accum is None:
|
|
self.accum = np.zeros_like(dW)
|
|
|
|
# TODO: prevent allocations everywhere by using [:].
|
|
# assuming that really works. i haven't actually checked.
|
|
|
|
total_norm = np.linalg.norm(dW)
|
|
clip_scale = self.clip / (total_norm + 1e-6)
|
|
if clip_scale < 1:
|
|
#print("clipping gradients; norm: {:10.5f}".format(total_norm))
|
|
dW *= clip_scale
|
|
|
|
#fmt = 'W std: {:10.7f}e-3, dWstd: {:10.7f}e-3, V std: {:10.7f}e-3'
|
|
#print(fmt.format(np.std(W), np.std(dW) * 100, np.std(V) * 100))
|
|
|
|
b = self.beta
|
|
m1b = 1 - self.beta
|
|
debias = 1 / (1 - self.beta_t) if self.debias_enabled else 1
|
|
|
|
g = dW
|
|
g_squared = np.square(g)
|
|
g_norm_squared = np.sum(g_squared)
|
|
g_norm = np.sqrt(g_norm_squared)
|
|
|
|
self.curv_win[self.step % self.window_size] = g_norm_squared
|
|
valid_window = self.curv_win[:min(self.window_size, self.step + 1)]
|
|
h_min_t = np.min(valid_window)
|
|
h_max_t = np.max(valid_window)
|
|
|
|
self.g_lpf = b * self.g_lpf + m1b * g
|
|
#self.g_squared_lpf = b * self.g_squared_lpf + m1b * g_squared
|
|
self.g_norm_squared_lpf = b * self.g_norm_squared_lpf + m1b * g_norm_squared
|
|
self.g_norm_lpf = b * self.g_norm_lpf + m1b * g_norm
|
|
self.h_min_lpf = b * self.h_min_lpf + m1b * h_min_t
|
|
self.h_max_lpf = b * self.h_max_lpf + m1b * h_max_t
|
|
|
|
g_avg = debias * self.g_lpf
|
|
#g_squared_avg = debias * self.g_squared_lpf
|
|
g_norm_squared_avg = debias * self.g_norm_squared_lpf
|
|
g_norm_avg = debias * self.g_norm_lpf
|
|
self.h_min = debias * self.h_min_lpf
|
|
self.h_max = debias * self.h_max_lpf
|
|
assert self.h_max >= self.h_min
|
|
|
|
dist = g_norm_avg / g_norm_squared_avg
|
|
|
|
self.dist_lpf = b * self.dist_lpf + m1b * dist
|
|
|
|
self.dist_avg = debias * self.dist_lpf
|
|
|
|
self.g_var = g_norm_squared_avg - np.sum(np.square(g_avg))
|
|
# equivalently:
|
|
#self.g_var = np.sum(np.abs(g_squared_avg - np.square(g_avg)))
|
|
|
|
if self.step > 0:
|
|
lr_for_real, mu_for_real = self.get_lr_mu()
|
|
self.mu_lpf = b * self.mu_lpf + m1b * mu_for_real
|
|
self.lr_lpf = b * self.lr_lpf + m1b * lr_for_real
|
|
self.mu = debias * self.mu_lpf
|
|
self.lr = debias * self.lr_lpf
|
|
|
|
self.accum[:] = self.accum * self.mu - self.lr * dW
|
|
V = self.accum
|
|
|
|
self.step += 1
|
|
self.beta_t *= self.beta
|
|
return V
|
|
|
|
# Nonparametric Layers {{{1
|
|
|
|
class AlphaDropout(Layer):
|
|
# to be used alongside Selu activations.
|
|
# paper: https://arxiv.org/abs/1706.02515
|
|
|
|
def __init__(self, dropout=0.0, alpha=1.67326324, lamb=1.05070099):
|
|
super().__init__()
|
|
self.alpha = _f(alpha)
|
|
self.lamb = _f(lamb)
|
|
self.saturated = -self.lamb * self.alpha
|
|
self.dropout = _f(dropout)
|
|
|
|
@property
|
|
def dropout(self):
|
|
return self._dropout
|
|
|
|
@dropout.setter
|
|
def dropout(self, x):
|
|
self._dropout = _f(x)
|
|
self.q = 1 - self._dropout
|
|
assert 0 <= self.q <= 1
|
|
|
|
sat = self.saturated
|
|
|
|
self.a = 1 / np.sqrt(self.q + sat * sat * self.q * self._dropout)
|
|
self.b = -self.a * (self._dropout * sat)
|
|
|
|
def forward(self, X):
|
|
self.mask = np.random.rand(*X.shape) < self.q
|
|
return self.a * np.where(self.mask, X, self.saturated) + self.b
|
|
|
|
def forward_deterministic(self, X):
|
|
return X
|
|
|
|
def backward(self, dY):
|
|
return dY * self.a * self.mask
|
|
|
|
class Decimate(Layer):
|
|
# simple decimaton layer that drops every other sample from the last axis.
|
|
|
|
def __init__(self, phase='even'):
|
|
super().__init__()
|
|
# phase is the set of samples we keep in the forward pass.
|
|
assert phase in ('even', 'odd'), phase
|
|
self.phase = phase
|
|
|
|
def make_shape(self, parent):
|
|
shape = parent.output_shape
|
|
self.input_shape = shape
|
|
divy = (shape[-1] + 1) // 2 if self.phase == 'even' else shape[-1] // 2
|
|
self.output_shape = tuple(list(shape[:-1]) + [divy])
|
|
self.dX = np.zeros(self.input_shape, dtype=_f)
|
|
|
|
def forward(self, X):
|
|
self.batch_size = X.shape[0]
|
|
if self.phase == 'even':
|
|
return X.ravel()[0::2].reshape(self.batch_size, *self.output_shape)
|
|
elif self.phase == 'odd':
|
|
return X.ravel()[1::2].reshape(self.batch_size, *self.output_shape)
|
|
|
|
def backward(self, dY):
|
|
assert dY.shape[0] == self.batch_size
|
|
dX = np.zeros((self.batch_size, *self.input_shape), dtype=_f)
|
|
if self.phase == 'even':
|
|
dX.ravel()[0::2] = dY.ravel()
|
|
elif self.phase == 'odd':
|
|
dX.ravel()[1::2] = dY.ravel()
|
|
return dX
|
|
|
|
class Undecimate(Layer):
|
|
# inverse operation of Decimate. not quite interpolation.
|
|
|
|
def __init__(self, phase='even'):
|
|
super().__init__()
|
|
# phase is the set of samples we keep in the backward pass.
|
|
assert phase in ('even', 'odd'), phase
|
|
self.phase = phase
|
|
|
|
def make_shape(self, parent):
|
|
shape = parent.output_shape
|
|
self.input_shape = shape
|
|
mult = shape[-1] * 2
|
|
self.output_shape = tuple(list(shape[:-1]) + [mult])
|
|
|
|
def forward(self, X):
|
|
self.batch_size = X.shape[0]
|
|
Y = np.zeros((self.batch_size, *self.output_shape), dtype=_f)
|
|
if self.phase == 'even':
|
|
Y.ravel()[0::2] = X.ravel()
|
|
elif self.phase == 'odd':
|
|
Y.ravel()[1::2] = X.ravel()
|
|
return Y
|
|
|
|
def backward(self, dY):
|
|
assert dY.shape[0] == self.batch_size
|
|
if self.phase == 'even':
|
|
return dY.ravel()[0::2].reshape(self.batch_size, *self.input_shape)
|
|
elif self.phase == 'odd':
|
|
return dY.ravel()[1::2].reshape(self.batch_size, *self.input_shape)
|
|
|
|
# Activations {{{2
|
|
|
|
class Selu(Layer):
|
|
# paper: https://arxiv.org/abs/1706.02515
|
|
|
|
def __init__(self, alpha=1.67326324, lamb=1.05070099):
|
|
super().__init__()
|
|
self.alpha = _f(alpha)
|
|
self.lamb = _f(lamb)
|
|
|
|
def forward(self, X):
|
|
self.cond = X >= 0
|
|
self.neg = self.alpha * np.exp(X)
|
|
return self.lamb * np.where(self.cond, X, self.neg - self.alpha)
|
|
|
|
def backward(self, dY):
|
|
return dY * self.lamb * np.where(self.cond, 1, self.neg)
|
|
|
|
class TanhTest(Layer):
|
|
def forward(self, X):
|
|
self.sig = np.tanh(1 / 2 * X)
|
|
return 2.4004 * self.sig
|
|
|
|
def backward(self, dY):
|
|
return dY * (1 / 2 * 2.4004) * (1 - self.sig * self.sig)
|
|
|
|
class ExpGB(Layer):
|
|
# an output layer for one-hot classification problems.
|
|
# use with MSE (SquaredHalved), not CategoricalCrossentropy!
|
|
# paper: https://arxiv.org/abs/1707.04199
|
|
|
|
def __init__(self, alpha=0.1, beta=0.0):
|
|
super().__init__()
|
|
self.alpha = _f(alpha)
|
|
self.beta = _f(beta)
|
|
|
|
def forward(self, X):
|
|
return self.alpha * np.exp(X) + self.beta
|
|
|
|
def backward(self, dY):
|
|
# this gradient is intentionally incorrect.
|
|
return dY
|
|
|
|
class CubicGB(Layer):
|
|
# an output layer for one-hot classification problems.
|
|
# use with MSE (SquaredHalved), not CategoricalCrossentropy!
|
|
# paper: https://arxiv.org/abs/1707.04199
|
|
# note: in the paper, it's called pow3GB, which is ugly.
|
|
|
|
def __init__(self, alpha=0.001, beta=0.4):
|
|
super().__init__()
|
|
self.alpha = _f(alpha)
|
|
self.beta = _f(beta)
|
|
|
|
def forward(self, X):
|
|
return self.alpha * X**3 + self.beta
|
|
|
|
def backward(self, dY):
|
|
# this gradient is intentionally incorrect.
|
|
return dY
|
|
|
|
# Parametric Layers {{{1
|
|
|
|
class Conv1Dper(Layer):
|
|
# periodic (circular) convolution.
|
|
# currently only supports one channel I/O.
|
|
# some notes:
|
|
# we could use FFTs for larger convolutions.
|
|
# i think storing the coefficients backwards would
|
|
# eliminate reversal in the critical code.
|
|
|
|
serialize = {
|
|
'W': 'coeffs',
|
|
'b': 'biases',
|
|
}
|
|
|
|
def __init__(self, kernel_size, bias=True, pos=None,
|
|
init=init_glorot_uniform, reg_w=None, reg_b=None):
|
|
super().__init__()
|
|
self.kernel_size = int(kernel_size)
|
|
self.bias = bool(bias)
|
|
self.coeffs = self._new_weights('coeffs', init=init, regularizer=reg_w)
|
|
self.biases = self._new_weights('biases', init=init_zeros, regularizer=reg_b)
|
|
if pos is None:
|
|
self.wrap0 = (self.kernel_size - 0) // 2
|
|
self.wrap1 = (self.kernel_size - 1) // 2
|
|
elif pos == 'alt':
|
|
self.wrap0 = (self.kernel_size - 1) // 2
|
|
self.wrap1 = (self.kernel_size - 0) // 2
|
|
elif pos == 'left':
|
|
self.wrap0 = 0
|
|
self.wrap1 = self.kernel_size - 1
|
|
elif pos == 'right':
|
|
self.wrap0 = self.kernel_size - 1
|
|
self.wrap1 = 0
|
|
else:
|
|
raise Exception("pos parameter not understood: {}".format(pos))
|
|
|
|
def make_shape(self, parent):
|
|
shape = parent.output_shape
|
|
self.input_shape = shape
|
|
assert len(shape) == 1, shape
|
|
self.output_shape = shape
|
|
self.coeffs.shape = (1, self.kernel_size)
|
|
self.biases.shape = (1, shape[0])
|
|
|
|
def forward(self, X):
|
|
if self.wrap0 == 0:
|
|
Xper = np.hstack((X,X[:,:self.wrap1]))
|
|
elif self.wrap1 == 0:
|
|
Xper = np.hstack((X[:,-self.wrap0:],X))
|
|
else:
|
|
Xper = np.hstack((X[:,-self.wrap0:],X,X[:,:self.wrap1]))
|
|
self.cols = rolling_batch(Xper, self.kernel_size)
|
|
convolved = (self.cols * self.coeffs.f[:,::-1]).sum(2)
|
|
if self.bias:
|
|
convolved += self.biases.f
|
|
return convolved
|
|
|
|
def backward(self, dY):
|
|
self.coeffs.g += (dY[:,:,None] * self.cols).sum(0)[:,::-1].sum(0, keepdims=True)
|
|
if self.bias:
|
|
self.biases.g += dY.sum(0, keepdims=True)
|
|
return (dY[:,:,None] * self.coeffs.f[:,::-1]).sum(2)
|
|
|
|
class LayerNorm(Layer):
|
|
# paper: https://arxiv.org/abs/1607.06450
|
|
# note: nonparametric when affine == False
|
|
|
|
def __init__(self, eps=1e-5, affine=True):
|
|
super().__init__()
|
|
self.eps = _f(eps)
|
|
self.affine = bool(affine)
|
|
|
|
if self.affine:
|
|
self.gamma = self._new_weights('gamma', init=init_ones)
|
|
self.beta = self._new_weights('beta', init=init_zeros)
|
|
self.serialized = {
|
|
'gamma': 'gamma',
|
|
'beta': 'beta',
|
|
}
|
|
|
|
def make_shape(self, parent):
|
|
shape = parent.output_shape
|
|
self.input_shape = shape
|
|
self.output_shape = shape
|
|
assert len(shape) == 1, shape
|
|
if self.affine:
|
|
self.gamma.shape = (shape[0],)
|
|
self.beta.shape = (shape[0],)
|
|
|
|
def forward(self, X):
|
|
self.mean = X.mean(0)
|
|
self.center = X - self.mean
|
|
self.var = self.center.var(0) + self.eps
|
|
self.std = np.sqrt(self.var)
|
|
|
|
self.Xnorm = self.center / self.std
|
|
if self.affine:
|
|
return self.gamma.f * self.Xnorm + self.beta.f
|
|
return self.Xnorm
|
|
|
|
def backward(self, dY):
|
|
length = dY.shape[0]
|
|
|
|
if self.affine:
|
|
dXnorm = dY * self.gamma.f
|
|
self.gamma.g += (dY * self.Xnorm).sum(0)
|
|
self.beta.g += dY.sum(0)
|
|
else:
|
|
dXnorm = dY
|
|
|
|
dstd = (dXnorm * self.center).sum(0) / -self.var
|
|
dcenter = dXnorm / self.std + dstd / self.std * self.center / length
|
|
dmean = -dcenter.sum(0)
|
|
dX = dcenter + dmean / length
|
|
|
|
return dX
|
|
|
|
class Denses(Layer): # TODO: rename?
|
|
# acts as a separate Dense for each row or column. only for 2D arrays.
|
|
|
|
serialized = {
|
|
'W': 'coeffs',
|
|
'b': 'biases',
|
|
}
|
|
|
|
def __init__(self, dim, init=init_he_uniform, reg_w=None, reg_b=None, axis=-1):
|
|
super().__init__()
|
|
self.dim = int(dim)
|
|
self.weight_init = init
|
|
self.axis = int(axis)
|
|
self.coeffs = self._new_weights('coeffs', init=init, regularizer=reg_w)
|
|
self.biases = self._new_weights('biases', init=init_zeros, regularizer=reg_b)
|
|
|
|
def make_shape(self, parent):
|
|
shape = parent.output_shape
|
|
self.input_shape = shape
|
|
assert len(shape) == 2, shape
|
|
|
|
assert -len(shape) <= self.axis < len(shape)
|
|
self.axis = self.axis % len(shape)
|
|
|
|
self.output_shape = list(shape)
|
|
self.output_shape[self.axis] = self.dim
|
|
self.output_shape = tuple(self.output_shape)
|
|
|
|
in_rows = self.input_shape[0]
|
|
in_cols = self.input_shape[1]
|
|
out_rows = self.output_shape[0]
|
|
out_cols = self.output_shape[1]
|
|
|
|
self.coeffs.shape = (in_rows, in_cols, self.dim)
|
|
self.biases.shape = (1, out_rows, out_cols)
|
|
|
|
def forward(self, X):
|
|
self.X = X
|
|
if self.axis == 0:
|
|
return np.einsum('ixj,xjk->ikj', X, self.coeffs.f) + self.biases.f
|
|
elif self.axis == 1:
|
|
return np.einsum('ijx,jxk->ijk', X, self.coeffs.f) + self.biases.f
|
|
|
|
def backward(self, dY):
|
|
self.biases.g += dY.sum(0, keepdims=True)
|
|
if self.axis == 0:
|
|
self.coeffs.g += np.einsum('ixj,ikj->xjk', self.X, dY)
|
|
return np.einsum('ikj,xjk->ixj', dY, self.coeffs.f)
|
|
elif self.axis == 1:
|
|
self.coeffs.g += np.einsum('ijx,ijk->jxk', self.X, dY)
|
|
return np.einsum('ijk,jxk->ijx', dY, self.coeffs.f)
|
|
|
|
class CosineDense(Dense):
|
|
# paper: https://arxiv.org/abs/1702.05870
|
|
# another implementation: https://github.com/farizrahman4u/keras-contrib/pull/36
|
|
# the paper doesn't mention bias,
|
|
# so we treat bias as an additional weight with a constant input of 1.
|
|
# this is correct in Dense layers, so i hope it's correct here too.
|
|
|
|
eps = 1e-4
|
|
|
|
def forward(self, X):
|
|
self.X = X
|
|
self.X_norm = np.sqrt(np.square(X).sum(-1, keepdims=True) \
|
|
+ 1 + self.eps)
|
|
self.W_norm = np.sqrt(np.square(self.coeffs.f).sum(0, keepdims=True) \
|
|
+ np.square(self.biases.f) + self.eps)
|
|
self.dot = X.dot(self.coeffs.f) + self.biases.f
|
|
Y = self.dot / (self.X_norm * self.W_norm)
|
|
return Y
|
|
|
|
def backward(self, dY):
|
|
ddot = dY / self.X_norm / self.W_norm
|
|
dX_norm = -(dY * self.dot / self.W_norm).sum(-1, keepdims=True) / self.X_norm**2
|
|
dW_norm = -(dY * self.dot / self.X_norm).sum( 0, keepdims=True) / self.W_norm**2
|
|
|
|
self.coeffs.g += self.X.T.dot(ddot) \
|
|
+ dW_norm / self.W_norm * self.coeffs.f
|
|
self.biases.g += ddot.sum(0, keepdims=True) \
|
|
+ dW_norm / self.W_norm * self.biases.f
|
|
dX = ddot.dot(self.coeffs.f.T) + dX_norm / self.X_norm * self.X
|
|
|
|
return dX
|
|
|
|
# Rituals {{{1
|
|
|
|
def stochastic_multiply(W, gamma=0.5, allow_negation=False):
|
|
# paper: https://arxiv.org/abs/1606.01981
|
|
|
|
assert W.ndim == 1, W.ndim
|
|
assert 0 < gamma < 1, gamma
|
|
size = len(W)
|
|
alpha = np.max(np.abs(W))
|
|
# NOTE: numpy gives [low, high) but the paper advocates [low, high]
|
|
mult = np.random.uniform(gamma, 1/gamma, size=size)
|
|
if allow_negation:
|
|
# NOTE: i have yet to see this do anything but cause divergence.
|
|
# i've referenced the paper several times yet still don't understand
|
|
# what i'm doing wrong, so i'm disabling it by default in my code.
|
|
# maybe i just need *a lot* more weights to compensate.
|
|
prob = (W / alpha + 1) / 2
|
|
samples = np.random.random_sample(size=size)
|
|
mult *= np.where(samples < prob, 1, -1)
|
|
np.multiply(W, mult, out=W)
|
|
|
|
class StochMRitual(Ritual):
|
|
# paper: https://arxiv.org/abs/1606.01981
|
|
# this probably doesn't make sense for regression problems,
|
|
# let alone small models, but here it is anyway!
|
|
|
|
def __init__(self, learner=None, loss=None, mloss=None, gamma=0.5):
|
|
super().__init__(learner, loss, mloss)
|
|
self.gamma = _f(gamma)
|
|
|
|
def prepare(self, model):
|
|
self.W = np.copy(model.W)
|
|
super().prepare(model)
|
|
|
|
def learn(self, inputs, outputs):
|
|
# an experiment:
|
|
#assert self.learner.rate < 10, self.learner.rate
|
|
#self.gamma = 1 - 1/2**(1 - np.log10(self.learner.rate))
|
|
|
|
self.W[:] = self.model.W
|
|
for layer in self.model.ordered_nodes:
|
|
if isinstance(layer, Dense):
|
|
stochastic_multiply(layer.coeffs.ravel(), gamma=self.gamma)
|
|
residual = super().learn(inputs, outputs)
|
|
self.model.W[:] = self.W
|
|
return residual
|
|
|
|
def update(self):
|
|
super().update()
|
|
f = 0.5
|
|
for layer in self.model.ordered_nodes:
|
|
if isinstance(layer, Dense):
|
|
np.clip(layer.W, -layer.std * f, layer.std * f, out=layer.W)
|
|
# np.clip(layer.W, -1, 1, out=layer.W)
|
|
|
|
class NoisyRitual(Ritual):
|
|
def __init__(self, learner=None, loss=None, mloss=None,
|
|
input_noise=0, output_noise=0, gradient_noise=0):
|
|
self.input_noise = _f(input_noise)
|
|
self.output_noise = _f(output_noise)
|
|
self.gradient_noise = _f(gradient_noise)
|
|
super().__init__(learner, loss, mloss)
|
|
|
|
def learn(self, inputs, outputs):
|
|
# this is pretty crude
|
|
if self.input_noise > 0:
|
|
s = self.input_noise
|
|
inputs = inputs + np.random.normal(0, s, size=inputs.shape)
|
|
if self.output_noise > 0:
|
|
s = self.output_noise
|
|
outputs = outputs + np.random.normal(0, s, size=outputs.shape)
|
|
return super().learn(inputs, outputs)
|
|
|
|
def update(self):
|
|
# gradient noise paper: https://arxiv.org/abs/1511.06807
|
|
if self.gradient_noise > 0:
|
|
size = len(self.model.dW)
|
|
gamma = 0.55
|
|
#s = self.gradient_noise / (1 + self.bn) ** gamma
|
|
# experiments:
|
|
s = self.gradient_noise * np.sqrt(self.learner.rate)
|
|
#s = np.square(self.learner.rate)
|
|
#s = self.learner.rate / self.en
|
|
self.model.dW += np.random.normal(0, max(s, 1e-8), size=size)
|
|
super().update()
|
|
|
|
# Learners {{{1
|
|
|
|
class DumbLearner(AnnealingLearner):
|
|
# this is my own awful contraption. it's not really "SGD with restarts".
|
|
def __init__(self, optim, epochs=100, rate=None, halve_every=10,
|
|
restarts=0, restart_advance=20, callback=None):
|
|
self.restart_epochs = int(epochs)
|
|
self.restarts = int(restarts)
|
|
self.restart_advance = float(restart_advance)
|
|
self.restart_callback = callback
|
|
epochs = self.restart_epochs * (self.restarts + 1)
|
|
super().__init__(optim, epochs, rate, halve_every)
|
|
|
|
def rate_at(self, epoch):
|
|
sub_epoch = epoch % self.restart_epochs
|
|
restart = epoch // self.restart_epochs
|
|
return super().rate_at(sub_epoch) * (self.anneal**self.restart_advance)**restart
|
|
|
|
def next(self):
|
|
if not super().next():
|
|
return False
|
|
sub_epoch = self.epoch % self.restart_epochs
|
|
restart = self.epoch // self.restart_epochs
|
|
if restart > 0 and sub_epoch == 0:
|
|
if self.restart_callback is not None:
|
|
self.restart_callback(restart)
|
|
return True
|
|
|
|
# Components {{{1
|
|
|
|
def _mr_make_norm(norm):
|
|
def _mr_norm(y, width, depth, block, multi, activation, style, FC, d):
|
|
skip = y
|
|
merger = Sum()
|
|
skip.feed(merger)
|
|
z_start = skip
|
|
z_start = z_start.feed(norm())
|
|
z_start = z_start.feed(activation())
|
|
for _ in range(multi):
|
|
z = z_start
|
|
for j in range(block):
|
|
if j > 0:
|
|
z = z.feed(norm())
|
|
z = z.feed(activation())
|
|
z = z.feed(FC())
|
|
z.feed(merger)
|
|
y = merger
|
|
return y
|
|
return _mr_norm
|
|
|
|
def _mr_batchless(y, width, depth, block, multi, activation, style, FC, d):
|
|
skip = y
|
|
merger = Sum()
|
|
skip.feed(merger)
|
|
z_start = skip.feed(activation())
|
|
for _ in range(multi):
|
|
z = z_start
|
|
for j in range(block):
|
|
if j > 0:
|
|
z = z.feed(activation())
|
|
z = z.feed(FC())
|
|
z.feed(merger)
|
|
y = merger
|
|
return y
|
|
|
|
def _mr_onelesssum(y, width, depth, block, multi, activation, style, FC, d):
|
|
# this is my own awful contraption.
|
|
is_last = d + 1 == depth
|
|
needs_sum = not is_last or multi > 1
|
|
skip = y
|
|
if needs_sum:
|
|
merger = Sum()
|
|
if not is_last:
|
|
skip.feed(merger)
|
|
z_start = skip.feed(activation())
|
|
for _ in range(multi):
|
|
z = z_start
|
|
for j in range(block):
|
|
if j > 0:
|
|
z = z.feed(activation())
|
|
z = z.feed(FC())
|
|
if needs_sum:
|
|
z.feed(merger)
|
|
if needs_sum:
|
|
y = merger
|
|
else:
|
|
y = z
|
|
return y
|
|
|
|
_mr_styles = dict(
|
|
lnorm=_mr_make_norm(LayerNorm),
|
|
batchless=_mr_batchless,
|
|
onelesssum=_mr_onelesssum,
|
|
)
|
|
|
|
def multiresnet(x, width, depth, block=2, multi=1,
|
|
activation=Relu, style='batchless',
|
|
init=init_he_normal):
|
|
if style == 'cossim':
|
|
style = 'batchless'
|
|
DenseClass = CosineDense
|
|
else:
|
|
DenseClass = Dense
|
|
if style not in _mr_styles:
|
|
raise Exception('unknown resnet style', style)
|
|
|
|
y = x
|
|
last_size = x.output_shape[0]
|
|
|
|
for d in range(depth):
|
|
size = width
|
|
FC = lambda: DenseClass(size, init)
|
|
|
|
if last_size != size:
|
|
y = y.feed(FC())
|
|
|
|
y = _mr_styles[style](y, width, depth, block, multi, activation, style, FC, d)
|
|
|
|
last_size = size
|
|
|
|
return y
|
|
|
|
# Toy Data {{{1
|
|
|
|
inits = dict(he_normal=init_he_normal, he_uniform=init_he_uniform,
|
|
glorot_normal=init_glorot_normal, glorot_uniform=init_glorot_uniform,
|
|
gaussian_unit=init_gaussian_unit)
|
|
activations = dict(sigmoid=Sigmoid, tanh=Tanh, lecun=LeCunTanh,
|
|
relu=Relu, elu=Elu, gelu=GeluApprox, selu=Selu,
|
|
softplus=Softplus)
|
|
|
|
def prettyize(data):
|
|
if isinstance(data, np.ndarray):
|
|
s = ', '.join(('{:8.2e}'.format(n) for n in data))
|
|
s = '[' + s + ']'
|
|
else:
|
|
s = '{:8.2e}'.format(data)
|
|
return s
|
|
|
|
def normalize_data(data, mean=None, std=None):
|
|
# in-place
|
|
if mean is None or std is None:
|
|
mean = np.mean(data, axis=0)
|
|
std = np.std(data, axis=0)
|
|
mean_str = prettyize(mean)
|
|
std_str = prettyize(std)
|
|
lament('nod(...,\n {},\n {})'.format(mean_str, std_str))
|
|
sys.exit(1)
|
|
data -= _f(mean)
|
|
data /= _f(std)
|
|
|
|
def toy_data(train_samples, valid_samples, problem=2):
|
|
total_samples = train_samples + valid_samples
|
|
|
|
nod = normalize_data # shorthand to keep a sane indentation
|
|
|
|
if problem == 0:
|
|
from ml.cie_mlp_data import inputs, outputs, valid_inputs, valid_outputs
|
|
inputs, outputs = _f(inputs), _f(outputs)
|
|
valid_inputs, valid_outputs = _f(valid_inputs), _f(valid_outputs)
|
|
|
|
nod(inputs, 127.5, 73.9)
|
|
nod(outputs, 44.8, 21.7)
|
|
nod(valid_inputs, 127.5, 73.9)
|
|
nod(valid_outputs, 44.8, 21.7)
|
|
|
|
elif problem == 1:
|
|
from sklearn.datasets import make_friedman1
|
|
inputs, outputs = make_friedman1(total_samples)
|
|
inputs, outputs = _f(inputs), _f(outputs)
|
|
outputs = np.expand_dims(outputs, -1)
|
|
|
|
nod(inputs, 0.5, 1/np.sqrt(12))
|
|
nod(outputs, 14.4, 4.9)
|
|
|
|
elif problem == 2:
|
|
from sklearn.datasets import make_friedman2
|
|
inputs, outputs = make_friedman2(total_samples)
|
|
inputs, outputs = _f(inputs), _f(outputs)
|
|
outputs = np.expand_dims(outputs, -1)
|
|
|
|
nod(inputs,
|
|
[5.00e+01, 9.45e+02, 5.01e-01, 5.98e+00],
|
|
[2.89e+01, 4.72e+02, 2.89e-01, 2.87e+00])
|
|
|
|
nod(outputs, [482], [380])
|
|
|
|
elif problem == 3:
|
|
from sklearn.datasets import make_friedman3
|
|
inputs, outputs = make_friedman3(total_samples)
|
|
inputs, outputs = _f(inputs), _f(outputs)
|
|
outputs = np.expand_dims(outputs, -1)
|
|
|
|
nod(inputs,
|
|
[4.98e+01, 9.45e+02, 4.99e-01, 6.02e+00],
|
|
[2.88e+01, 4.73e+02, 2.90e-01, 2.87e+00])
|
|
|
|
nod(outputs, [1.32327931], [0.31776295])
|
|
|
|
else:
|
|
raise Exception("unknown toy data set", problem)
|
|
|
|
if problem != 0:
|
|
# split off a validation set
|
|
indices = np.arange(inputs.shape[0])
|
|
np.random.shuffle(indices)
|
|
valid_inputs = inputs[indices][-valid_samples:]
|
|
valid_outputs = outputs[indices][-valid_samples:]
|
|
inputs = inputs[indices][:-valid_samples]
|
|
outputs = outputs[indices][:-valid_samples]
|
|
|
|
return (inputs, outputs), (valid_inputs, valid_outputs)
|
|
|
|
# Model Creation {{{1
|
|
|
|
def optim_from_config(config):
|
|
if config.optim == 'adam':
|
|
d1 = config.optim_decay1 if 'optim_decay1' in config else 9.5
|
|
d2 = config.optim_decay2 if 'optim_decay2' in config else 999.5
|
|
b1 = np.exp(-1/d1)
|
|
b2 = np.exp(-1/d2)
|
|
o = Nadam if config.nesterov else Adam
|
|
optim = o(b1=b1, b2=b2)
|
|
elif config.optim == 'ftml':
|
|
d1 = config.optim_decay1 if 'optim_decay1' in config else 2
|
|
d2 = config.optim_decay2 if 'optim_decay2' in config else 999.5
|
|
b1 = np.exp(-1/d1)
|
|
b2 = np.exp(-1/d2)
|
|
optim = FTML(b1=b1, b2=b2)
|
|
elif config.optim == 'yf':
|
|
d1 = config.optim_decay1 if 'optim_decay1' in config else 999.5
|
|
d2 = config.optim_decay2 if 'optim_decay2' in config else 999.5
|
|
if d1 != d2:
|
|
raise Exception("yellowfin only uses one decay term.")
|
|
beta = np.exp(-1/d1)
|
|
optim = YellowFin(beta=beta)
|
|
elif config.optim in ('rms', 'rmsprop'):
|
|
d2 = config.optim_decay2 if 'optim_decay2' in config else 99.5
|
|
mu = np.exp(-1/d2)
|
|
optim = RMSprop(mu=mu)
|
|
elif config.optim == 'sgd':
|
|
d1 = config.optim_decay1 if 'optim_decay1' in config else 0
|
|
clip = config.gradient_clip if 'gradient_clip' in config else 0.0
|
|
if d1 > 0 or clip > 0:
|
|
b1 = np.exp(-1/d1) if d1 > 0 else 0
|
|
if clip > 0:
|
|
optim = MomentumClip(mu=b1, nesterov=config.nesterov, clip=clip)
|
|
else:
|
|
optim = Momentum(mu=b1, nesterov=config.nesterov)
|
|
else:
|
|
optim = Optimizer()
|
|
else:
|
|
raise Exception('unknown optimizer', config.optim)
|
|
|
|
return optim
|
|
|
|
def learner_from_config(config, optim, rscb):
|
|
if config.learner == 'sgdr':
|
|
expando = config.expando if 'expando' in config else None
|
|
learner = SGDR(optim, epochs=config.epochs, rate=config.learn,
|
|
restart_decay=config.restart_decay, restarts=config.restarts,
|
|
callback=rscb, expando=expando)
|
|
# final learning rate isn't of interest here; it's gonna be close to 0.
|
|
log('total epochs', learner.epochs)
|
|
elif config.learner in ('sin', 'sine'):
|
|
lower_rate = config.learn * 1e-5 # TODO: allow access to this.
|
|
epochs = config.epochs * (config.restarts + 1)
|
|
frequency = config.epochs
|
|
learner = SineCLR(optim, epochs=epochs, frequency=frequency,
|
|
upper_rate=config.learn, lower_rate=lower_rate,
|
|
callback=rscb)
|
|
elif config.learner == 'wave':
|
|
lower_rate = config.learn * 1e-5 # TODO: allow access to this.
|
|
epochs = config.epochs * (config.restarts + 1)
|
|
frequency = config.epochs
|
|
learner = WaveCLR(optim, epochs=epochs, frequency=frequency,
|
|
upper_rate=config.learn, lower_rate=lower_rate,
|
|
callback=rscb)
|
|
elif config.learner == 'anneal':
|
|
learner = AnnealingLearner(optim, epochs=config.epochs, rate=config.learn,
|
|
halve_every=config.learn_halve_every)
|
|
log("final learning rate", "{:10.8f}".format(learner.final_rate))
|
|
elif config.learner == 'dumb':
|
|
learner = DumbLearner(optim, epochs=config.epochs, rate=config.learn,
|
|
halve_every=config.learn_halve_every,
|
|
restarts=config.restarts,
|
|
restart_advance=config.learn_restart_advance,
|
|
callback=rscb)
|
|
log("final learning rate", "{:10.8f}".format(learner.final_rate))
|
|
elif config.learner == 'sgd':
|
|
learner = Learner(optim, epochs=config.epochs, rate=config.learn)
|
|
else:
|
|
raise Exception('unknown learner', config.learner)
|
|
|
|
return learner
|
|
|
|
def lookup_loss(maybe_name):
|
|
if isinstance(maybe_name, Loss):
|
|
return maybe_name
|
|
elif maybe_name == 'mse':
|
|
return Squared()
|
|
elif maybe_name == 'mshe': # mushy
|
|
return SquaredHalved()
|
|
elif maybe_name == 'mae':
|
|
return Absolute()
|
|
elif maybe_name == 'msee':
|
|
return SomethingElse()
|
|
raise Exception('unknown objective', maybe_name)
|
|
|
|
def ritual_from_config(config, learner, loss, mloss):
|
|
if config.ritual == 'default':
|
|
ritual = Ritual(learner=learner, loss=loss, mloss=mloss)
|
|
elif config.ritual == 'stochm':
|
|
ritual = StochMRitual(learner=learner, loss=loss, mloss=mloss)
|
|
elif config.ritual == 'noisy':
|
|
ritual = NoisyRitual(learner=learner, loss=loss, mloss=mloss,
|
|
input_noise=1e-1, output_noise=1e-2,
|
|
gradient_noise=2e-7)
|
|
else:
|
|
raise Exception('unknown ritual', config.ritual)
|
|
|
|
return ritual
|
|
|
|
def model_from_config(config, input_features, output_features, callbacks=None):
|
|
init = inits[config.init]
|
|
activation = activations[config.activation]
|
|
|
|
x = Input(shape=(input_features,))
|
|
y = x
|
|
y = multiresnet(y,
|
|
config.res_width, config.res_depth,
|
|
config.res_block, config.res_multi,
|
|
activation=activation, init=init,
|
|
style=config.parallel_style)
|
|
if y.output_shape[0] != output_features:
|
|
y = y.feed(Dense(output_features, init))
|
|
|
|
model = Model(x, y, unsafe=config.unsafe)
|
|
|
|
if config.fn_load is not None:
|
|
log('loading weights', config.fn_load)
|
|
model.load_weights(config.fn_load)
|
|
|
|
optim = optim_from_config(config)
|
|
|
|
def rscb(restart):
|
|
if callbacks:
|
|
callbacks.restart()
|
|
log("restarting", restart)
|
|
if config.restart_optim:
|
|
optim.reset()
|
|
|
|
learner = learner_from_config(config, optim, rscb)
|
|
|
|
loss = lookup_loss(config.loss)
|
|
mloss = lookup_loss(config.mloss) if config.mloss else loss
|
|
|
|
ritual = ritual_from_config(config, learner, loss, mloss)
|
|
|
|
return model, learner, ritual
|
|
|
|
# main program {{{1
|
|
|
|
def run(program, args=None):
|
|
args = args if args else []
|
|
|
|
lower_priority()
|
|
np.random.seed(42069)
|
|
|
|
# Config {{{2
|
|
|
|
from dotmap import DotMap
|
|
config = DotMap(
|
|
fn_load = None,
|
|
fn_save = 'optim_nn.h5',
|
|
log_fn = 'losses.npz',
|
|
|
|
# multi-residual network parameters
|
|
res_width = 28,
|
|
res_depth = 2,
|
|
res_block = 3, # normally 2 for plain resnet
|
|
res_multi = 2, # normally 1 for plain resnet
|
|
|
|
# style of resnet (order of layers, which layers, etc.)
|
|
parallel_style = 'onelesssum',
|
|
activation = 'gelu',
|
|
|
|
#optim = 'ftml',
|
|
#optim_decay1 = 2,
|
|
#optim_decay2 = 100,
|
|
optim = 'adam', # note: most features only implemented for Adam
|
|
optim_decay1 = 24, # first momentum given in epochs (optional)
|
|
optim_decay2 = 100, # second momentum given in epochs (optional)
|
|
nesterov = True, # not available for all optimizers.
|
|
batch_size = 64,
|
|
|
|
# learning parameters
|
|
learner = 'sgdr',
|
|
learn = 0.00125,
|
|
epochs = 24,
|
|
learn_halve_every = 16, # only used with anneal/dumb
|
|
restarts = 4,
|
|
restart_decay = 0.25, # only used with SGDR
|
|
expando = lambda i: 24 * i,
|
|
|
|
# misc
|
|
init = 'he_normal',
|
|
loss = 'mse',
|
|
mloss = 'mse',
|
|
ritual = 'default',
|
|
restart_optim = False, # restarts also reset internal state of optimizer
|
|
warmup = False, # train a couple epochs on gaussian noise and reset
|
|
|
|
# logging/output
|
|
log10_loss = True, # personally, i'm sick of looking linear loss values!
|
|
#fancy_logs = True, # unimplemented (can't turn it off yet)
|
|
|
|
problem = 2,
|
|
compare = (
|
|
# best results for ~10,000 parameters
|
|
# training/validation pairs for each problem (starting from problem 0):
|
|
(10**-3.120, 10**-2.901),
|
|
# 1080 epochs on these...
|
|
(10**-6.747, 10**-6.555),
|
|
(10**-7.774, 10**-7.626),
|
|
(10**-6.278, 10**-5.234), # overfitting? bad valid set?
|
|
),
|
|
|
|
unsafe = True, # aka gotta go fast mode
|
|
)
|
|
|
|
for k in ['parallel_style', 'activation', 'optim', 'learner',
|
|
'init', 'loss', 'mloss', 'ritual']:
|
|
config[k] = config[k].lower()
|
|
|
|
config.learn *= np.sqrt(config.batch_size)
|
|
|
|
config.pprint()
|
|
|
|
# Toy Data {{{2
|
|
|
|
(inputs, outputs), (valid_inputs, valid_outputs) = \
|
|
toy_data(2**14, 2**11, problem=config.problem)
|
|
input_features = inputs.shape[-1]
|
|
output_features = outputs.shape[-1]
|
|
|
|
# Our Test Model
|
|
|
|
callbacks = Dummy()
|
|
|
|
model, learner, ritual = \
|
|
model_from_config(config, input_features, output_features, callbacks)
|
|
|
|
# Model Information {{{2
|
|
|
|
model.print_graph()
|
|
log('parameters', model.param_count)
|
|
|
|
# Training {{{2
|
|
|
|
batch_losses = []
|
|
train_losses = []
|
|
valid_losses = []
|
|
|
|
def measure_error():
|
|
def print_error(name, inputs, outputs, comparison=None):
|
|
predicted = model.forward(inputs)
|
|
err = ritual.mloss.forward(predicted, outputs)
|
|
if config.log10_loss:
|
|
print(name, "{:12.6e}".format(err))
|
|
if comparison:
|
|
err10 = np.log10(err)
|
|
cmp10 = np.log10(comparison)
|
|
color = '\x1B[31m' if err10 > cmp10 else '\x1B[32m'
|
|
log(name + " log10-loss", "{:+6.3f} {}({:+6.3f})\x1B[0m".format(err10, color, err10 - cmp10))
|
|
else:
|
|
log(name + " log10-loss", "{:+6.3f}".format(err, np.log10(err)))
|
|
else:
|
|
log(name + " loss", "{:12.6e}".format(err))
|
|
if comparison:
|
|
fmt = "10**({:+7.4f}) times"
|
|
log("improvement", fmt.format(np.log10(comparison / err)))
|
|
return err
|
|
|
|
train_err = print_error("train",
|
|
inputs, outputs,
|
|
config.compare[config.problem][0])
|
|
valid_err = print_error("valid",
|
|
valid_inputs, valid_outputs,
|
|
config.compare[config.problem][1])
|
|
train_losses.append(train_err)
|
|
valid_losses.append(valid_err)
|
|
|
|
callbacks.restart = measure_error
|
|
|
|
training = config.epochs > 0 and config.restarts >= 0
|
|
|
|
ritual.prepare(model)
|
|
|
|
if training and config.warmup and not config.fn_load:
|
|
log("warming", "up")
|
|
|
|
# use plain SGD in warmup to prevent (or possibly cause?) numeric issues
|
|
temp_optim = learner.optim
|
|
temp_loss = ritual.loss
|
|
learner.optim = Optimizer(lr=0.001)
|
|
ritual.loss = Absolute() # less likely to blow up; more general
|
|
|
|
# NOTE: experiment: trying const batches and batch_size
|
|
bs = 256
|
|
target = 1 * 1024 * 1024
|
|
# 4 being sizeof(float)
|
|
batches = (target / 4 / np.prod(inputs.shape[1:])) // bs * bs
|
|
ins = [int(batches)] + list( inputs.shape[1:])
|
|
outs = [int(batches)] + list(outputs.shape[1:])
|
|
|
|
for _ in range(4):
|
|
ritual.train_batched(
|
|
np.random.normal(size=ins),
|
|
np.random.normal(size=outs),
|
|
batch_size=bs)
|
|
ritual.reset()
|
|
|
|
learner.optim = temp_optim
|
|
ritual.loss = temp_loss
|
|
|
|
if training:
|
|
measure_error()
|
|
|
|
while training and learner.next():
|
|
avg_loss, losses = ritual.train_batched(
|
|
inputs, outputs,
|
|
config.batch_size,
|
|
return_losses=True)
|
|
batch_losses += losses
|
|
|
|
if config.log10_loss:
|
|
fmt = "epoch {:4.0f}, rate {:10.8f}, log10-loss {:+6.3f}"
|
|
log("info", fmt.format(learner.epoch, learner.rate, np.log10(avg_loss)),
|
|
update=True)
|
|
else:
|
|
fmt = "epoch {:4.0f}, rate {:10.8f}, loss {:12.6e}"
|
|
log("info", fmt.format(learner.epoch, learner.rate, avg_loss),
|
|
update=True)
|
|
|
|
measure_error()
|
|
|
|
if training and config.fn_save is not None:
|
|
log('saving weights', config.fn_save)
|
|
model.save_weights(config.fn_save, overwrite=True)
|
|
|
|
if training and config.log_fn is not None:
|
|
log('saving losses', config.log_fn)
|
|
np.savez_compressed(config.log_fn,
|
|
batch_losses=np.array(batch_losses, dtype=_f),
|
|
train_losses=np.array(train_losses, dtype=_f),
|
|
valid_losses=np.array(valid_losses, dtype=_f))
|
|
|
|
# Evaluation {{{2
|
|
# TODO: write this portion again
|
|
|
|
return 0
|
|
|
|
# run main program {{{1
|
|
|
|
if __name__ == '__main__':
|
|
sys.exit(run(sys.argv[0], sys.argv[1:]))
|