optim/onn/activation.py

186 lines
4.9 KiB
Python

import numpy as np
# just for speed, not strictly essential:
from scipy.special import expit as sigmoid
from .float import *
from .layer_base import *
class Identity(Layer):
def forward(self, X):
return X
def backward(self, dY):
return dY
class Sigmoid(Layer): # aka Logistic, Expit (inverse of Logit)
def forward(self, X):
self.sig = sigmoid(X)
return self.sig
def backward(self, dY):
return dY * self.sig * (1 - self.sig)
class Softplus(Layer):
# integral of Sigmoid.
def forward(self, X):
self.X = X
return np.log(1 + np.exp(X))
def backward(self, dY):
return dY * sigmoid(self.X)
class Tanh(Layer):
def forward(self, X):
self.sig = np.tanh(X)
return self.sig
def backward(self, dY):
return dY * (1 - self.sig * self.sig)
class LeCunTanh(Layer):
# paper: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
# paper: http://yann.lecun.com/exdb/publis/pdf/lecun-89.pdf
# scaled such that f([-1, 1]) = [-1, 1].
# helps preserve an input variance of 1.
# second derivative peaks around an input of ±1.
def forward(self, X):
self.sig = np.tanh(2 / 3 * X)
return 1.7159 * self.sig
def backward(self, dY):
return dY * (2 / 3 * 1.7159) * (1 - self.sig * self.sig)
class Relu(Layer):
def forward(self, X):
self.cond = X >= 0
return np.where(self.cond, X, 0)
def backward(self, dY):
return np.where(self.cond, dY, 0)
class Elu(Layer):
# paper: https://arxiv.org/abs/1511.07289
def __init__(self, alpha=1):
super().__init__()
self.alpha = _f(alpha) # FIXME: unused
def forward(self, X):
self.cond = X >= 0
self.neg = np.exp(X) - 1
return np.where(self.cond, X, self.neg)
def backward(self, dY):
return dY * np.where(self.cond, 1, self.neg + 1)
class GeluApprox(Layer):
# paper: https://arxiv.org/abs/1606.08415
# plot: https://www.desmos.com/calculator/ydzgtccsld
def forward(self, X):
self.a = 1.704 * X
self.sig = sigmoid(self.a)
return X * self.sig
def backward(self, dY):
return dY * self.sig * (1 + self.a * (1 - self.sig))
class Softmax(Layer):
def forward(self, X):
alpha = np.max(X, axis=-1, keepdims=True)
num = np.exp(X - alpha)
den = np.sum(num, axis=-1, keepdims=True)
self.sm = num / den
return self.sm
def backward(self, dY):
return (dY - np.sum(dY * self.sm, axis=-1, keepdims=True)) * self.sm
class LogSoftmax(Softmax):
def __init__(self, eps=1e-6):
super().__init__()
self.eps = _f(eps)
def forward(self, X):
return np.log(super().forward(X) + self.eps)
def backward(self, dY):
return dY - np.sum(dY, axis=-1, keepdims=True) * self.sm
class Cos(Layer):
# performs well on MNIST for some strange reason.
def forward(self, X):
self.X = X
return np.cos(X)
def backward(self, dY):
return dY * -np.sin(self.X)
class Selu(Layer):
# paper: https://arxiv.org/abs/1706.02515
def __init__(self, alpha=1.67326324, lamb=1.05070099):
super().__init__()
self.alpha = _f(alpha)
self.lamb = _f(lamb)
def forward(self, X):
self.cond = X >= 0
self.neg = self.alpha * np.exp(X)
return self.lamb * np.where(self.cond, X, self.neg - self.alpha)
def backward(self, dY):
return dY * self.lamb * np.where(self.cond, 1, self.neg)
# more
class TanhTest(Layer):
def forward(self, X):
self.sig = np.tanh(1 / 2 * X)
return 2.4004 * self.sig
def backward(self, dY):
return dY * (1 / 2 * 2.4004) * (1 - self.sig * self.sig)
class ExpGB(Layer):
# an output layer for one-hot classification problems.
# use with MSE (SquaredHalved), not CategoricalCrossentropy!
# paper: https://arxiv.org/abs/1707.04199
def __init__(self, alpha=0.1, beta=0.0):
super().__init__()
self.alpha = _f(alpha)
self.beta = _f(beta)
def forward(self, X):
return self.alpha * np.exp(X) + self.beta
def backward(self, dY):
# this gradient is intentionally incorrect.
return dY
class CubicGB(Layer):
# an output layer for one-hot classification problems.
# use with MSE (SquaredHalved), not CategoricalCrossentropy!
# paper: https://arxiv.org/abs/1707.04199
# note: in the paper, it's called pow3GB, which is ugly.
def __init__(self, alpha=0.1, beta=0.0):
# note: the paper suggests defaults of 0.001 and 0.0,
# but these didn't seem to work as well in my limited testing.
super().__init__()
self.alpha = _f(alpha)
self.beta = _f(beta)
def forward(self, X):
return self.alpha * X**3 + self.beta
def backward(self, dY):
# this gradient is intentionally incorrect.
return dY