optim/optim_nn_core.py

1132 lines
34 KiB
Python

import numpy as np
_f = np.float32
# just for speed, not strictly essential:
from scipy.special import expit as sigmoid
# used for numbering layers like Keras, and keeping initialization consistent:
from collections import defaultdict, OrderedDict
_layer_counters = defaultdict(lambda: 0)
def _check(a):
assert isinstance(a, np.ndarray) or type(a) == _f, type(a)
assert a.dtype == _f, a.dtype
return a
_0 = _f(0)
_1 = _f(1)
_2 = _f(2)
_inv2 = _f(1/2)
_sqrt2 = _f(np.sqrt(2))
_invsqrt2 = _f(1/np.sqrt(2))
_pi = _f(np.pi)
class LayerIncompatibility(Exception):
pass
# Initializations {{{1
# note: these are currently only implemented for 2D shapes.
def init_zeros(size, ins=None, outs=None):
return np.zeros(size)
def init_ones(size, ins=None, outs=None):
return np.ones(size)
def init_he_normal(size, ins, outs):
s = np.sqrt(2 / ins)
return np.random.normal(0, s, size=size)
def init_he_uniform(size, ins, outs):
s = np.sqrt(6 / ins)
return np.random.uniform(-s, s, size=size)
def init_glorot_normal(size, ins, outs):
s = np.sqrt(2 / (ins + outs))
return np.random.normal(0, s, size=size)
def init_glorot_uniform(size, ins, outs):
s = np.sqrt(6 / (ins + outs))
return np.random.uniform(-s, s, size=size)
# Weight container {{{1
class Weights:
# we may or may not contain weights -- or any information, for that matter.
def __init__(self, **kwargs):
self.f = None # forward weights
self.g = None # backward weights (gradients)
self.shape = None
self.init = None
self.allocator = None
self.regularizer = None
self.configure(**kwargs)
def configure(self, **kwargs):
for k, v in kwargs.items():
getattr(self, k) # ensures the key already exists
setattr(self, k, v)
@property
def size(self):
assert self.shape is not None
return np.prod(self.shape)
def allocate(self, *args, **kwargs):
self.configure(**kwargs)
# intentionally not using isinstance
assert type(self.shape) == tuple, self.shape
f, g = self.allocator(self.size)
assert len(f) == self.size, "{} != {}".format(f.shape, self.size)
assert len(g) == self.size, "{} != {}".format(g.shape, self.size)
f[:] = self.init(self.size, *args)
g[:] = self.init(self.size, *args)
self.f = f.reshape(self.shape)
self.g = g.reshape(self.shape)
def forward(self):
if self.regularizer is None:
return 0.0
return self.regularizer.forward(self.f)
def backward(self):
if self.regularizer is None:
return 0.0
return self.regularizer.backward(self.f)
def update(self):
if self.regularizer is None:
return
self.g += self.regularizer.backward(self.f)
# Loss functions {{{1
class Loss:
pass
class CategoricalCrossentropy(Loss):
# lifted from theano
def __init__(self, eps=1e-6):
self.eps = _f(eps)
def forward(self, p, y):
p = np.clip(p, self.eps, 1 - self.eps)
f = np.sum(-y * np.log(p) - (1 - y) * np.log(1 - p), axis=-1)
return np.mean(f)
def backward(self, p, y):
p = np.clip(p, self.eps, 1 - self.eps)
df = (p - y) / (p * (1 - p))
return df / len(y)
class Accuracy(Loss):
# returns percentage of categories correctly predicted.
# utilizes argmax(), so it cannot be used for gradient descent.
# use CategoricalCrossentropy for that instead.
def forward(self, p, y):
correct = np.argmax(p, axis=-1) == np.argmax(y, axis=-1)
return np.mean(correct)
def backward(self, p, y):
raise NotImplementedError("cannot take the gradient of Accuracy")
class ResidualLoss(Loss):
def forward(self, p, y):
return np.mean(self.f(p - y))
def backward(self, p, y):
ret = self.df(p - y) / len(y)
return ret
class Squared(ResidualLoss):
def f(self, r):
return np.square(r)
def df(self, r):
return 2 * r
class Absolute(ResidualLoss):
def f(self, r):
return np.abs(r)
def df(self, r):
return np.sign(r)
# Regularizers {{{1
class Regularizer:
pass
class L1L2(Regularizer):
def __init__(self, l1=0.0, l2=0.0):
self.l1 = _f(l1)
self.l2 = _f(l2)
def forward(self, X):
f = _0
if self.l1:
f += np.sum(self.l1 * np.abs(X))
if self.l2:
f += np.sum(self.l2 * np.square(X))
return f
def backward(self, X):
df = np.zeros_like(X)
if self.l1:
df += self.l1 * np.sign(X)
if self.l2:
df += self.l2 * 2 * X
return df
# Optimizers {{{1
class Optimizer:
def __init__(self, alpha=0.1):
self.alpha = _f(alpha) # learning rate
self.reset()
def reset(self):
pass
def compute(self, dW, W):
return -self.alpha * dW
def update(self, dW, W):
W += self.compute(dW, W)
# the following optimizers are blatantly lifted from tiny-dnn:
# https://github.com/tiny-dnn/tiny-dnn/blob/master/tiny_dnn/optimizers/optimizer.h
class Momentum(Optimizer):
def __init__(self, alpha=0.01, mu=0.9, nesterov=False):
self.mu = _f(mu) # momentum
self.nesterov = bool(nesterov)
super().__init__(alpha)
def reset(self):
self.Vprev = None
def compute(self, dW, W):
if self.Vprev is None:
self.Vprev = np.copy(dW)
V = self.mu * self.Vprev - self.alpha * dW
self.Vprev[:] = V
if self.nesterov:
return self.mu * V - self.alpha * dW
return V
class RMSprop(Optimizer):
# RMSprop generalizes* Adagrad, etc.
# TODO: verify this is correct:
# * RMSprop == Adagrad when
# RMSprop.mu == 1
def __init__(self, alpha=0.0001, mu=0.99, eps=1e-8):
self.mu = _f(mu) # decay term
self.eps = _f(eps)
# one might consider the following equation when specifying mu:
# mu = e**(-1/t)
# default: t = -1/ln(0.99) = ~99.5
# therefore the default of mu=0.99 means
# an input decays to 1/e its original amplitude over 99.5 epochs.
# (this is from DSP, so how relevant it is in SGD is debatable)
super().__init__(alpha)
def reset(self):
self.g = None
def compute(self, dW, W):
if self.g is None:
self.g = np.zeros_like(dW)
# basically apply a first-order low-pass filter to delta squared
self.g[:] = self.mu * self.g + (1 - self.mu) * dW * dW
# equivalent (though numerically different?):
#self.g += (dW * dW - self.g) * (1 - self.mu)
# finally sqrt it to complete the running root-mean-square approximation
return -self.alpha * dW / np.sqrt(self.g + self.eps)
class Adam(Optimizer):
# paper: https://arxiv.org/abs/1412.6980
# Adam generalizes* RMSprop, and
# adds a decay term to the regular (non-squared) delta, and
# does some decay-gain voodoo. (i guess it's compensating
# for the filtered deltas starting from zero)
# * Adam == RMSprop when
# Adam.b1 == 0
# Adam.b2 == RMSprop.mu
def __init__(self, alpha=0.002, b1=0.9, b2=0.999, eps=1e-8):
self.b1 = _f(b1) # decay term
self.b2 = _f(b2) # decay term
self.b1_t_default = _f(b1) # decay term power t
self.b2_t_default = _f(b2) # decay term power t
self.eps = _f(eps)
super().__init__(alpha)
def reset(self):
self.mt = None
self.vt = None
self.b1_t = self.b1_t_default
self.b2_t = self.b2_t_default
def compute(self, dW, W):
if self.mt is None:
self.mt = np.zeros_like(dW)
if self.vt is None:
self.vt = np.zeros_like(dW)
# decay gain
self.b1_t *= self.b1
self.b2_t *= self.b2
# filter
self.mt[:] = self.b1 * self.mt + (1 - self.b1) * dW
self.vt[:] = self.b2 * self.vt + (1 - self.b2) * dW * dW
return -self.alpha * (self.mt / (1 - self.b1_t)) \
/ np.sqrt((self.vt / (1 - self.b2_t)) + self.eps)
class Nadam(Optimizer):
# paper: https://arxiv.org/abs/1412.6980
# paper: http://cs229.stanford.edu/proj2015/054_report.pdf
# TODO: double-check this implementation. also read the damn paper.
# lifted from https://github.com/fchollet/keras/blob/5d38b04/keras/optimizers.py#L530
# lifted from https://github.com/jpilaul/IFT6266_project/blob/master/Models/Algo_Momentum.py
def __init__(self, alpha=0.002, b1=0.9, b2=0.999, eps=1e-8):
self.b1 = _f(b1) # decay term
self.b2 = _f(b2) # decay term
self.eps = _f(eps)
super().__init__(alpha)
def reset(self):
self.mt = None
self.vt = None
self.t = 0
self.sched = 1
def compute(self, dW, W):
self.t += 1
if self.mt is None:
self.mt = np.zeros_like(dW)
if self.vt is None:
self.vt = np.zeros_like(dW)
ut0 = self.b1 * (1 - 0.5 * 0.96**(self.t + 0))
ut1 = self.b1 * (1 - 0.5 * 0.96**(self.t + 1))
sched0 = self.sched * ut0
sched1 = self.sched * ut0 * ut1
self.sched = sched0
gp = dW / (1 - sched0)
self.mt[:] = self.b1 * self.mt + (1 - self.b1) * dW
self.vt[:] = self.b2 * self.vt + (1 - self.b2) * np.square(dW)
mtp = self.mt / (1 - sched1)
vtp = self.vt / (1 - self.b2**self.t)
mt_bar = (1 - ut0) * gp + ut1 * mtp
return -self.alpha * mt_bar / (np.sqrt(vtp) + self.eps)
# Abstract Layers {{{1
class Layer:
def __init__(self):
self.parents = []
self.children = []
self.weights = OrderedDict()
self.loss = None # for activity regularizers
self.input_shape = None
self.output_shape = None
kind = self.__class__.__name__
global _layer_counters
_layer_counters[kind] += 1
self.name = "{}_{}".format(kind, _layer_counters[kind])
self.unsafe = False # disables assertions for better performance
def __str__(self):
return self.name
# methods we might want to override:
def forward(self, X):
raise NotImplementedError("unimplemented", self)
def forward_deterministic(self, X):
return self.forward(X)
def backward(self, dY):
raise NotImplementedError("unimplemented", self)
def make_shape(self, parent):
if self.input_shape == None:
self.input_shape = parent.output_shape
if self.output_shape == None:
self.output_shape = self.input_shape
def do_feed(self, child):
self.children.append(child)
def be_fed(self, parent):
self.parents.append(parent)
# TODO: better names for these (still)
def _propagate(self, edges, deterministic):
if not self.unsafe:
assert len(edges) == 1, self
if deterministic:
return self.forward_deterministic(edges[0])
else:
return self.forward(edges[0])
def _backpropagate(self, edges):
if len(edges) == 1:
return self.backward(edges[0])
return sum((self.backward(dY) for dY in edges))
# general utility methods:
def is_compatible(self, parent):
return np.all(self.input_shape == parent.output_shape)
def feed(self, child):
assert self.output_shape is not None, self
child.make_shape(self)
if not child.is_compatible(self):
fmt = "{} is incompatible with {}: shape mismatch: {} vs. {}"
raise LayerIncompatibility(fmt.format(self, child, self.output_shape, child.input_shape))
self.do_feed(child)
child.be_fed(self)
return child
def validate_input(self, X):
assert X.shape[1:] == self.input_shape, (str(self), X.shape[1:], self.input_shape)
def validate_output(self, Y):
assert Y.shape[1:] == self.output_shape, (str(self), Y.shape[1:], self.output_shape)
def _new_weights(self, name, **kwargs):
w = Weights(**kwargs)
assert name not in self.weights, name
self.weights[name] = w
return w
@property
def size(self):
return sum((w.size for w in self.weights.values()))
def init(self, allocator):
ins, outs = self.input_shape[0], self.output_shape[0]
for k, w in self.weights.items():
w.allocate(ins, outs, allocator=allocator)
def propagate(self, values, deterministic):
if not self.unsafe:
assert self.parents, self
edges = []
for parent in self.parents:
# TODO: skip over irrelevant nodes (if any)
X = values[parent]
if not self.unsafe:
self.validate_input(X)
edges.append(X)
Y = self._propagate(edges, deterministic)
if not self.unsafe:
self.validate_output(Y)
return Y
def backpropagate(self, values):
if not self.unsafe:
assert self.children, self
edges = []
for child in self.children:
# TODO: skip over irrelevant nodes (if any)
dY = values[child]
if not self.unsafe:
self.validate_output(dY)
edges.append(dY)
dX = self._backpropagate(edges)
if not self.unsafe:
self.validate_input(dX)
return dX
# Nonparametric Layers {{{1
class Input(Layer):
def __init__(self, shape):
assert shape is not None
super().__init__()
self.shape = tuple(shape)
self.input_shape = self.shape
self.output_shape = self.shape
def forward(self, X):
return X
def backward(self, dY):
#self.dY = dY
return np.zeros_like(dY)
class Reshape(Layer):
def __init__(self, new_shape):
super().__init__()
self.shape = tuple(new_shape)
self.output_shape = self.shape
def forward(self, X):
self.batch_size = X.shape[0]
return X.reshape(self.batch_size, *self.output_shape)
def backward(self, dY):
assert dY.shape[0] == self.batch_size
return dY.reshape(self.batch_size, *self.input_shape)
class Flatten(Layer):
def make_shape(self, parent):
shape = parent.output_shape
self.input_shape = shape
self.output_shape = (np.prod(shape),)
def forward(self, X):
self.batch_size = X.shape[0]
return X.reshape(self.batch_size, *self.output_shape)
def backward(self, dY):
assert dY.shape[0] == self.batch_size
return dY.reshape(self.batch_size, *self.input_shape)
class ConstAffine(Layer):
def __init__(self, a=1, b=0):
super().__init__()
self.a = _f(a)
self.b = _f(b)
def forward(self, X):
return self.a * X + self.b
def backward(self, dY):
return dY * self.a
class Sum(Layer):
def _propagate(self, edges, deterministic):
return np.sum(edges, axis=0)
def _backpropagate(self, edges):
#assert len(edges) == 1, "unimplemented"
return edges[0] # TODO: does this always work?
class ActivityRegularizer(Layer):
def __init__(self, reg):
super().__init__()
assert isinstance(reg, Regularizer), reg
self.reg = reg
def forward(self, X):
self.X = X
self.loss = np.sum(self.reg.forward(X))
return X
def backward(self, dY):
return dY + self.reg.backward(self.X)
class Dropout(Layer):
def __init__(self, dropout=0.0):
super().__init__()
self.p = _f(1 - dropout)
assert 0 <= self.p <= 1
def forward(self, X):
self.mask = (np.random.rand(*X.shape) < self.p) / self.p
return X * self.mask
def forward_deterministic(self, X):
#self.mask = _1
return X
def backward(self, dY):
return dY * self.mask
# Activation Layers {{{2
class Sigmoid(Layer): # aka Logistic
def forward(self, X):
self.sig = sigmoid(X)
return self.sig
def backward(self, dY):
return dY * self.sig * (1 - self.sig)
class Tanh(Layer):
def forward(self, X):
self.sig = np.tanh(X)
return self.sig
def backward(self, dY):
return dY * (1 - self.sig * self.sig)
class Relu(Layer):
def forward(self, X):
self.cond = X >= 0
return np.where(self.cond, X, 0)
def backward(self, dY):
return np.where(self.cond, dY, 0)
class Elu(Layer):
# paper: https://arxiv.org/abs/1511.07289
def __init__(self, alpha=1):
super().__init__()
self.alpha = _f(alpha)
def forward(self, X):
self.cond = X >= 0
self.neg = np.exp(X) - 1
return np.where(self.cond, X, self.neg)
def backward(self, dY):
return dY * np.where(self.cond, 1, self.neg + 1)
class GeluApprox(Layer):
# paper: https://arxiv.org/abs/1606.08415
# plot: https://www.desmos.com/calculator/ydzgtccsld
def forward(self, X):
self.a = 1.704 * X
self.sig = sigmoid(self.a)
return X * self.sig
def backward(self, dY):
return dY * self.sig * (1 + self.a * (1 - self.sig))
class Softmax(Layer):
def __init__(self, axis=-1):
super().__init__()
self.axis = int(axis)
def forward(self, X):
alpha = np.max(X, axis=-1, keepdims=True)
num = np.exp(X - alpha)
den = np.sum(num, axis=-1, keepdims=True)
self.sm = num / den
return self.sm
def backward(self, dY):
return (dY - np.sum(dY * self.sm, axis=-1, keepdims=True)) * self.sm
class LogSoftmax(Softmax):
def __init__(self, axis=-1, eps=1e-6):
super().__init__()
self.axis = int(axis)
self.eps = _f(eps)
def forward(self, X):
return np.log(super().forward(X) + self.eps)
def backward(self, dY):
return dY - np.sum(dY, axis=-1, keepdims=True) * self.sm
# Parametric Layers {{{1
class Dense(Layer):
serialized = {
'W': 'coeffs',
'b': 'biases',
}
def __init__(self, dim, init=init_he_uniform, reg_w=None, reg_b=None):
super().__init__()
self.dim = int(dim)
self.output_shape = (dim,)
self.coeffs = self._new_weights('coeffs', init=init, regularizer=reg_w)
self.biases = self._new_weights('biases', init=init_zeros, regularizer=reg_b)
def make_shape(self, parent):
shape = parent.output_shape
self.input_shape = shape
assert len(shape) == 1, shape
self.coeffs.shape = (shape[0], self.dim)
self.biases.shape = (1, self.dim)
def forward(self, X):
self.X = X
return X.dot(self.coeffs.f) + self.biases.f
def backward(self, dY):
self.coeffs.g[:] = self.X.T.dot(dY)
self.biases.g[:] = dY.sum(0, keepdims=True)
return dY.dot(self.coeffs.f.T)
# Models {{{1
class Model:
def __init__(self, x, y, unsafe=False):
assert isinstance(x, Layer), x
assert isinstance(y, Layer), y
self.x = x
self.y = y
self.ordered_nodes = self.traverse([], self.y)
self.make_weights()
for node in self.ordered_nodes:
node.unsafe = unsafe
def make_weights(self):
self.param_count = sum((node.size for node in self.ordered_nodes))
self.W = np.zeros(self.param_count, dtype=_f)
self.dW = np.zeros(self.param_count, dtype=_f)
offset = 0
for node in self.ordered_nodes:
if node.size > 0:
end = offset + node.size
inner_offset = 0
def allocate(size):
nonlocal inner_offset
o = offset + inner_offset
ret = self.W[o:o+size], self.dW[o:o+size]
inner_offset += size
assert len(ret[0]) == len(ret[1])
assert size == len(ret[0]), (size, len(ret[0]))
return ret
node.init(allocate)
assert inner_offset <= node.size, "Layer {} allocated more weights than it said it would".format(node)
# i don't care if "less" is grammatically incorrect.
# you're mom is grammatically incorrect.
assert inner_offset >= node.size, "Layer {} allocated less weights than it said it would".format(node)
offset += node.size
def traverse(self, nodes, node):
if node == self.x:
return [node]
for parent in node.parents:
if parent not in nodes:
new_nodes = self.traverse(nodes, parent)
for new_node in new_nodes:
if new_node not in nodes:
nodes.append(new_node)
if nodes:
nodes.append(node)
return nodes
def forward(self, X, deterministic=False):
values = dict()
input_node = self.ordered_nodes[0]
output_node = self.ordered_nodes[-1]
values[input_node] = input_node._propagate(np.expand_dims(X, 0), deterministic)
for node in self.ordered_nodes[1:]:
values[node] = node.propagate(values, deterministic)
return values[output_node]
def backward(self, error):
values = dict()
output_node = self.ordered_nodes[-1]
values[output_node] = output_node._backpropagate(np.expand_dims(error, 0))
for node in reversed(self.ordered_nodes[:-1]):
values[node] = node.backpropagate(values)
return self.dW
def regulate_forward(self):
loss = _0
for node in self.ordered_nodes:
if node.loss is not None:
loss += node.loss
for k, w in node.weights.items():
loss += w.forward()
return loss
def regulate(self):
for node in self.ordered_nodes:
for k, w in node.weights.items():
w.update()
def load_weights(self, fn):
# seemingly compatible with keras' Dense layers.
import h5py
open(fn) # just ensure the file exists (python's error is better)
f = h5py.File(fn, 'r')
weights = {}
def visitor(name, obj):
if isinstance(obj, h5py.Dataset):
weights[name.split('/')[-1]] = np.array(obj[:], dtype=_f)
f.visititems(visitor)
f.close()
used = {}
for k in weights.keys():
used[k] = False
nodes = [node for node in self.ordered_nodes if node.size > 0]
for node in nodes:
full_name = str(node).lower()
for s_name, o_name in node.serialized.items():
key = full_name + '_' + s_name
data = weights[key]
target = getattr(node, o_name)
target.f[:] = data
used[key] = True
for k, v in used.items():
if not v:
lament("WARNING: unused weight", k)
def save_weights(self, fn, overwrite=False):
import h5py
f = h5py.File(fn, 'w')
counts = defaultdict(lambda: 0)
nodes = [node for node in self.ordered_nodes if node.size > 0]
for node in nodes:
full_name = str(node).lower()
grp = f.create_group(full_name)
for s_name, o_name in node.serialized.items():
key = full_name + '_' + s_name
target = getattr(node, o_name)
data = grp.create_dataset(key, target.shape, dtype=_f)
data[:] = target.f
counts[key] += 1
if counts[key] > 1:
lament("WARNING: rewrote weight", key)
f.close()
# Rituals {{{1
class Ritual: # i'm just making up names at this point
def __init__(self, learner=None, loss=None, mloss=None):
self.learner = learner if learner is not None else Learner(Optimizer())
self.loss = loss if loss is not None else Squared()
self.mloss = mloss if mloss is not None else loss
self.model = None
def reset(self):
self.learner.reset(optim=True)
self.en = 0
self.bn = 0
def measure(self, p, y):
return self.mloss.forward(p, y)
def forward(self, p, y):
return self.loss.forward(p, y) + self.model.regulate_forward()
def backward(self, p, y):
return self.loss.backward(p, y)
def learn(self, inputs, outputs):
predicted = self.model.forward(inputs)
self.model.backward(self.backward(predicted, outputs))
self.model.regulate()
return predicted
def update(self):
self.learner.optim.update(self.model.dW, self.model.W)
def prepare(self, model):
self.en = 0
self.bn = 0
self.model = model
def train_batched_gen(self, generator, batch_count,
return_losses=False, test_only=False):
assert isinstance(return_losses, bool) or return_losses == 'both'
if not test_only:
self.en += 1
cumsum_loss, cumsum_mloss = _0, _0
losses, mlosses = [], []
prev_batch_size = None
for b in range(batch_count):
if not test_only:
self.bn += 1
# TODO: pass a GeneratorData object containing en, bn, ritual/model fields.
# ...is there a pythonic way of doing that?
batch_inputs, batch_outputs = next(generator)
batch_size = batch_inputs.shape[0]
assert batch_size == prev_batch_size or prev_batch_size is None, \
"non-constant batch size (got {} expected {})".format(
batch_size, prev_batch_size) # TODO: lift this restriction
prev_batch_size = batch_size
# same from hereon
if not test_only and self.learner.per_batch:
self.learner.batch(b / batch_count)
if test_only:
predicted = self.model.forward(batch_inputs, deterministic=True)
else:
predicted = self.learn(batch_inputs, batch_outputs)
self.update()
if return_losses == 'both':
batch_loss = self.forward(predicted, batch_outputs)
if np.isnan(batch_loss):
raise Exception("nan")
losses.append(batch_loss)
cumsum_loss += batch_loss
# NOTE: this can use the non-deterministic predictions. fixme?
batch_mloss = self.measure(predicted, batch_outputs)
if np.isnan(batch_mloss):
raise Exception("nan")
if return_losses:
mlosses.append(batch_mloss)
cumsum_mloss += batch_mloss
avg_mloss = cumsum_mloss / _f(batch_count)
if return_losses == 'both':
avg_loss = cumsum_loss / _f(batch_count)
return avg_loss, avg_mloss, losses, mlosses
elif return_losses:
return avg_mloss, mlosses
return avg_mloss
def train_batched(self, inputs, outputs, batch_size,
return_losses=False, test_only=False):
assert isinstance(return_losses, bool) or return_losses == 'both'
if not test_only:
self.en += 1
cumsum_loss, cumsum_mloss = _0, _0
batch_count = inputs.shape[0] // batch_size
losses, mlosses = [], []
assert inputs.shape[0] % batch_size == 0, \
"inputs is not evenly divisible by batch_size" # TODO: lift this restriction
for b in range(batch_count):
if not test_only:
self.bn += 1
bi = b * batch_size
batch_inputs = inputs[ bi:bi+batch_size]
batch_outputs = outputs[bi:bi+batch_size]
# same from hereon
if not test_only and self.learner.per_batch:
self.learner.batch(b / batch_count)
if test_only:
predicted = self.model.forward(batch_inputs, deterministic=True)
else:
predicted = self.learn(batch_inputs, batch_outputs)
self.update()
if return_losses == 'both':
batch_loss = self.forward(predicted, batch_outputs)
if np.isnan(batch_loss):
raise Exception("nan")
losses.append(batch_loss)
cumsum_loss += batch_loss
# NOTE: this can use the non-deterministic predictions. fixme?
batch_mloss = self.measure(predicted, batch_outputs)
if np.isnan(batch_mloss):
raise Exception("nan")
if return_losses:
mlosses.append(batch_mloss)
cumsum_mloss += batch_mloss
avg_mloss = cumsum_mloss / _f(batch_count)
if return_losses == 'both':
avg_loss = cumsum_loss / _f(batch_count)
return avg_loss, avg_mloss, losses, mlosses
elif return_losses:
return avg_mloss, mlosses
return avg_mloss
def test_batched(self, *args, **kwargs):
return self.train_batched(*args, test_only=True, **kwargs)
# Learners {{{1
class Learner:
per_batch = False
def __init__(self, optim, epochs=100, rate=None):
assert isinstance(optim, Optimizer)
self.optim = optim
self.start_rate = optim.alpha if rate is None else _f(rate)
self.epochs = int(epochs)
self.reset()
def reset(self, optim=False):
self.started = False
self.epoch = 0
if optim:
self.optim.reset()
@property
def epoch(self):
return self._epoch
@epoch.setter
def epoch(self, new_epoch):
self._epoch = int(new_epoch)
if 0 <= self.epoch <= self.epochs:
self.rate = self.rate_at(self._epoch)
@property
def rate(self):
return self.optim.alpha
@rate.setter
def rate(self, new_rate):
self.optim.alpha = new_rate
def rate_at(self, epoch):
return self.start_rate
def next(self):
# prepares the next epoch. returns whether or not to continue training.
if not self.started:
self.started = True
self.epoch += 1
if self.epoch > self.epochs:
return False
return True
def batch(self, progress): # TODO: rename
# interpolates rates between epochs.
# unlike epochs, we do not store batch number as a state.
# i.e. calling next() will not respect progress.
assert 0 <= progress <= 1
self.rate = self.rate_at(self._epoch - 1 + progress)
@property
def final_rate(self):
return self.rate_at(self.epochs - 1)
class AnnealingLearner(Learner):
def __init__(self, optim, epochs=100, rate=None, halve_every=10):
self.halve_every = _f(halve_every)
self.anneal = _f(0.5**(1/self.halve_every))
super().__init__(optim, epochs, rate)
def rate_at(self, epoch):
return self.start_rate * self.anneal**epoch
def cosmod(x):
# plot: https://www.desmos.com/calculator/hlgqmyswy2
return (_1 + np.cos((x % _1) * _pi)) * _inv2
class SGDR(Learner):
# Stochastic Gradient Descent with Restarts
# paper: https://arxiv.org/abs/1608.03983
# NOTE: this is missing a couple features.
per_batch = True
def __init__(self, optim, epochs=100, rate=None,
restarts=0, restart_decay=0.5, callback=None,
expando=None):
self.restart_epochs = int(epochs)
self.decay = _f(restart_decay)
self.restarts = int(restarts)
self.restart_callback = callback
# TODO: rename expando to something not insane
self.expando = expando if expando is not None else lambda i: i
self.splits = []
epochs = 0
for i in range(0, self.restarts + 1):
split = epochs + self.restart_epochs + int(self.expando(i))
self.splits.append(split)
epochs = split
super().__init__(optim, epochs, rate)
def split_num(self, epoch):
shit = [0] + self.splits # hack
for i in range(0, len(self.splits)):
if epoch < self.splits[i]:
sub_epoch = epoch - shit[i]
next_restart = self.splits[i] - shit[i]
return i, sub_epoch, next_restart
if epoch == self.splits[-1]:
return len(self.splits) - 1, epoch, self.splits[-1]
raise Exception('this should never happen.')
def rate_at(self, epoch):
restart, sub_epoch, next_restart = self.split_num(epoch)
x = _f(sub_epoch) / _f(next_restart)
return self.start_rate * self.decay**_f(restart) * cosmod(x)
def next(self):
if not super().next():
return False
restart, sub_epoch, next_restart = self.split_num(self.epoch)
if restart > 0 and sub_epoch == 0:
if self.restart_callback is not None:
self.restart_callback(restart)
return True
class TriangularCLR(Learner):
# note: i haven't actually read (nor seen) the paper(s) on CLR,
# but this case (triangular) should be pretty difficult to get wrong.
per_batch = True
def __init__(self, optim, epochs=400, upper_rate=None, lower_rate=0,
frequency=100, callback=None):
# NOTE: start_rate is treated as upper_rate
self.frequency = int(frequency)
assert self.frequency > 0
self.callback = callback
self.lower_rate = _f(lower_rate)
super().__init__(optim, epochs, upper_rate)
def _t(self, epoch):
# NOTE: this could probably be simplified
offset = self.frequency / 2
return np.abs(((epoch + offset) % self.frequency) - offset) / offset
def rate_at(self, epoch):
# NOTE: start_rate is treated as upper_rate
return self._t(epoch) * (self.start_rate - self.lower_rate) + self.lower_rate
def next(self):
if not super().next():
return False
if self.epoch > 1 and self.epoch % self.frequency == 0:
if self.callback is not None:
self.callback(self.epoch // self.frequency)
return True
class SineCLR(TriangularCLR):
def _t(self, epoch):
return np.sin(_pi * _inv2 * super()._t(epoch))
class WaveCLR(TriangularCLR):
def _t(self, epoch):
return _inv2 * (_1 - np.cos(_pi * super()._t(epoch)))