optim/onn/loss.py

168 lines
4.3 KiB
Python

import numpy as np
from .float import _f
class Loss:
def forward(self, p, y):
raise NotImplementedError("unimplemented", self)
def backward(self, p, y):
raise NotImplementedError("unimplemented", self)
class NLL(Loss): # Negative Log Likelihood
# NOTE: this is a misnomer -- the "log" part is not implemented here.
# instead, you should use a Log activation at the end of your network
# e.g. LogSoftmax.
# TODO: simplify the math that comes about it.
def forward(self, p, y):
correct = p * y
return np.mean(-correct)
def backward(self, p, y):
return -y / len(p)
class HingeWW(Loss):
# multi-class hinge-loss, Weston & Watkins variant.
def forward(self, p, y):
# TODO: rename score since less is better.
score = p * (1 - y) - p * y
return np.mean(np.sum(np.maximum(1 + score, 0), axis=-1))
def backward(self, p, y):
score = p * (1 - y) - p * y
d_score = 1 - y - y
return (score >= -1) * d_score / len(y)
class HingeCS(Loss):
# multi-class hinge-loss, Crammer & Singer variant.
# this has been loosely extended to support multiple true classes.
# however, it should generally be used such that
# p is a vector that sums to 1 with values in [0, 1],
# and y is a one-hot encoding of the correct class.
def forward(self, p, y):
wrong = np.max((1 - y) * p, axis=-1)
right = np.max(y * p, axis=-1)
f = np.maximum(1 + wrong - right, 0)
return np.mean(f)
def backward(self, p, y):
wrong_in = (1 - y) * p
right_in = y * p
wrong = np.max(wrong_in, axis=-1, keepdims=True)
right = np.max(right_in, axis=-1, keepdims=True)
# note: this could go haywire if the maximum is not unique.
delta = (1 - y) * (wrong_in == wrong) - y * (right_in == right)
return (wrong - right >= -1) * delta / len(y)
class CategoricalCrossentropy(Loss):
# lifted from theano
def __init__(self, eps=1e-6):
self.eps = _f(eps)
def forward(self, p, y):
p = np.clip(p, self.eps, 1 - self.eps)
f = np.sum(-y * np.log(p) - (1 - y) * np.log(1 - p), axis=-1)
return np.mean(f)
def backward(self, p, y):
p = np.clip(p, self.eps, 1 - self.eps)
df = (p - y) / (p * (1 - p))
return df / len(y)
class Accuracy(Loss):
# returns percentage of categories correctly predicted.
# utilizes argmax(), so it cannot be used for gradient descent.
# use CategoricalCrossentropy or NLL for that instead.
def forward(self, p, y):
correct = np.argmax(p, axis=-1) == np.argmax(y, axis=-1)
return np.mean(correct)
def backward(self, p, y):
raise NotImplementedError("cannot take the gradient of Accuracy")
class ResidualLoss(Loss):
def forward(self, p, y):
return np.mean(self.f(p - y))
def backward(self, p, y):
ret = self.df(p - y) / len(y)
return ret
class SquaredHalved(ResidualLoss):
def f(self, r):
return np.square(r) / 2
def df(self, r):
return r
class Squared(ResidualLoss):
def f(self, r):
return np.square(r)
def df(self, r):
return 2 * r
class Absolute(ResidualLoss):
def f(self, r):
return np.abs(r)
def df(self, r):
return np.sign(r)
class Huber(ResidualLoss):
def __init__(self, delta=1.0):
self.delta = _f(delta)
def f(self, r):
return np.where(r <= self.delta,
np.square(r) / 2,
self.delta * (np.abs(r) - self.delta / 2))
def df(self, r):
return np.where(r <= self.delta,
r,
self.delta * np.sign(r))
def LogCosh(ResidualLoss):
# essentially a smooth version of Huber loss.
def f(self, r):
return np.log(np.cosh(x))
def df(self, r):
return np.tanh(r)
# more
class SomethingElse(ResidualLoss):
# generalizes Absolute and SquaredHalved.
# plot: https://www.desmos.com/calculator/fagjg9vuz7
def __init__(self, a=4/3):
assert 1 <= a <= 2, "parameter out of range"
self.a = _f(a / 2)
self.b = _f(2 / a)
self.c = _f(2 / a - 1)
def f(self, r):
return self.a * np.abs(r)**self.b
def df(self, r):
return np.sign(r) * np.abs(r)**self.c