48 lines
1.1 KiB
Python
48 lines
1.1 KiB
Python
import numpy as np
|
|
|
|
from .float import *
|
|
|
|
|
|
class Regularizer:
|
|
pass
|
|
|
|
|
|
class L1L2(Regularizer):
|
|
def __init__(self, l1=0.0, l2=0.0):
|
|
self.l1 = _f(l1)
|
|
self.l2 = _f(l2)
|
|
|
|
def forward(self, X):
|
|
f = _0
|
|
if self.l1:
|
|
f += np.sum(self.l1 * np.abs(X))
|
|
if self.l2:
|
|
f += np.sum(self.l2 * np.square(X))
|
|
return f
|
|
|
|
def backward(self, X):
|
|
df = np.zeros_like(X)
|
|
if self.l1:
|
|
df += self.l1 * np.sign(X)
|
|
if self.l2:
|
|
df += self.l2 * 2 * X
|
|
return df
|
|
|
|
|
|
# more
|
|
|
|
class SaturateRelu(Regularizer):
|
|
# paper: https://arxiv.org/abs/1703.09202
|
|
# TODO: test this (and ActivityRegularizer) more thoroughly.
|
|
# i've looked at the histogram of the resulting weights.
|
|
# it seems like only the layers after this are affected
|
|
# the way they should be.
|
|
|
|
def __init__(self, lamb=0.0):
|
|
self.lamb = _f(lamb)
|
|
|
|
def forward(self, X):
|
|
return self.lamb * np.where(X >= 0, X, 0)
|
|
|
|
def backward(self, X):
|
|
return self.lamb * np.where(X >= 0, 1, 0)
|