optim/onn/ritual.py
2018-01-22 19:40:36 +00:00

92 lines
3.3 KiB
Python

import numpy as np
from .float import *
from .initialization import *
from .ritual_base import *
def stochastic_multiply(W, gamma=0.5, allow_negation=False):
# paper: https://arxiv.org/abs/1606.01981
assert W.ndim == 1, W.ndim
assert 0 < gamma < 1, gamma
size = len(W)
alpha = np.max(np.abs(W))
# NOTE: numpy gives [low, high) but the paper advocates [low, high]
mult = np.random.uniform(gamma, 1/gamma, size=size)
if allow_negation:
# NOTE: i have yet to see this do anything but cause divergence.
# i've referenced the paper several times yet still don't understand
# what i'm doing wrong, so i'm disabling it by default in my code.
# maybe i just need *a lot* more weights to compensate.
prob = (W / alpha + 1) / 2
samples = np.random.random_sample(size=size)
mult *= np.where(samples < prob, 1, -1)
np.multiply(W, mult, out=W)
class StochMRitual(Ritual):
# paper: https://arxiv.org/abs/1606.01981
# this probably doesn't make sense for regression problems,
# let alone small models, but here it is anyway!
def __init__(self, learner=None, gamma=0.5):
super().__init__(learner)
self.gamma = _f(gamma)
def prepare(self, model):
self.W = np.copy(model.W)
super().prepare(model)
def learn(self, inputs, outputs):
# an experiment:
# assert self.learner.rate < 10, self.learner.rate
# self.gamma = 1 - 1/2**(1 - np.log10(self.learner.rate))
self.W[:] = self.model.W
for layer in self.model.ordered_nodes:
if isinstance(layer, Dense):
stochastic_multiply(layer.coeffs.ravel(), gamma=self.gamma)
residual = super().learn(inputs, outputs)
self.model.W[:] = self.W
return residual
def update(self):
super().update()
f = 0.5
for layer in self.model.ordered_nodes:
if isinstance(layer, Dense):
np.clip(layer.W, -layer.std * f, layer.std * f, out=layer.W)
# np.clip(layer.W, -1, 1, out=layer.W)
class NoisyRitual(Ritual):
def __init__(self, learner=None,
input_noise=0, output_noise=0, gradient_noise=0):
self.input_noise = _f(input_noise)
self.output_noise = _f(output_noise)
self.gradient_noise = _f(gradient_noise)
super().__init__(learner)
def learn(self, inputs, outputs):
# this is pretty crude
if self.input_noise > 0:
s = self.input_noise
inputs = inputs + np.random.normal(0, s, size=inputs.shape)
if self.output_noise > 0:
s = self.output_noise
outputs = outputs + np.random.normal(0, s, size=outputs.shape)
return super().learn(inputs, outputs)
def update(self):
# gradient noise paper: https://arxiv.org/abs/1511.06807
if self.gradient_noise > 0:
size = len(self.model.dW)
gamma = 0.55
# s = self.gradient_noise / (1 + self.bn) ** gamma
# experiments:
s = self.gradient_noise * np.sqrt(self.learner.rate)
# s = np.square(self.learner.rate)
# s = self.learner.rate / self.en
self.model.dW += np.random.normal(0, max(s, 1e-8), size=size)
super().update()