import numpy as np # just for speed, not strictly essential: from scipy.special import expit as sigmoid from .float import * from .layer_base import * class Identity(Layer): def forward(self, X): return X def backward(self, dY): return dY class Sigmoid(Layer): # aka Logistic, Expit (inverse of Logit) def forward(self, X): self.sig = sigmoid(X) return self.sig def backward(self, dY): return dY * self.sig * (1 - self.sig) class Softplus(Layer): # integral of Sigmoid. def forward(self, X): self.X = X return np.log(1 + np.exp(X)) def backward(self, dY): return dY * sigmoid(self.X) class Tanh(Layer): def forward(self, X): self.sig = np.tanh(X) return self.sig def backward(self, dY): return dY * (1 - self.sig * self.sig) class LeCunTanh(Layer): # paper: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf # paper: http://yann.lecun.com/exdb/publis/pdf/lecun-89.pdf # scaled such that f([-1, 1]) = [-1, 1]. # helps preserve an input variance of 1. # second derivative peaks around an input of ±1. def forward(self, X): self.sig = np.tanh(2 / 3 * X) return 1.7159 * self.sig def backward(self, dY): return dY * (2 / 3 * 1.7159) * (1 - self.sig * self.sig) class Relu(Layer): def forward(self, X): self.cond = X >= 0 return np.where(self.cond, X, 0) def backward(self, dY): return np.where(self.cond, dY, 0) class Elu(Layer): # paper: https://arxiv.org/abs/1511.07289 def __init__(self, alpha=1): super().__init__() self.alpha = _f(alpha) # FIXME: unused def forward(self, X): self.cond = X >= 0 self.neg = np.exp(X) - 1 return np.where(self.cond, X, self.neg) def backward(self, dY): return dY * np.where(self.cond, 1, self.neg + 1) class GeluApprox(Layer): # paper: https://arxiv.org/abs/1606.08415 # plot: https://www.desmos.com/calculator/ydzgtccsld def forward(self, X): self.a = 1.704 * X self.sig = sigmoid(self.a) return X * self.sig def backward(self, dY): return dY * self.sig * (1 + self.a * (1 - self.sig)) class Softmax(Layer): def forward(self, X): alpha = np.max(X, axis=-1, keepdims=True) num = np.exp(X - alpha) den = np.sum(num, axis=-1, keepdims=True) self.sm = num / den return self.sm def backward(self, dY): return (dY - np.sum(dY * self.sm, axis=-1, keepdims=True)) * self.sm class LogSoftmax(Softmax): def __init__(self, eps=1e-6): super().__init__() self.eps = _f(eps) def forward(self, X): return np.log(super().forward(X) + self.eps) def backward(self, dY): return dY - np.sum(dY, axis=-1, keepdims=True) * self.sm class Cos(Layer): # performs well on MNIST for some strange reason. def forward(self, X): self.X = X return np.cos(X) def backward(self, dY): return dY * -np.sin(self.X) class Selu(Layer): # paper: https://arxiv.org/abs/1706.02515 def __init__(self, alpha=1.67326324, lamb=1.05070099): super().__init__() self.alpha = _f(alpha) self.lamb = _f(lamb) def forward(self, X): self.cond = X >= 0 self.neg = self.alpha * np.exp(X) return self.lamb * np.where(self.cond, X, self.neg - self.alpha) def backward(self, dY): return dY * self.lamb * np.where(self.cond, 1, self.neg) # more class TanhTest(Layer): def forward(self, X): self.sig = np.tanh(1 / 2 * X) return 2.4004 * self.sig def backward(self, dY): return dY * (1 / 2 * 2.4004) * (1 - self.sig * self.sig) class ExpGB(Layer): # an output layer for one-hot classification problems. # use with MSE (SquaredHalved), not CategoricalCrossentropy! # paper: https://arxiv.org/abs/1707.04199 def __init__(self, alpha=0.1, beta=0.0): super().__init__() self.alpha = _f(alpha) self.beta = _f(beta) def forward(self, X): return self.alpha * np.exp(X) + self.beta def backward(self, dY): # this gradient is intentionally incorrect. return dY class CubicGB(Layer): # an output layer for one-hot classification problems. # use with MSE (SquaredHalved), not CategoricalCrossentropy! # paper: https://arxiv.org/abs/1707.04199 # note: in the paper, it's called pow3GB, which is ugly. def __init__(self, alpha=0.1, beta=0.0): # note: the paper suggests defaults of 0.001 and 0.0, # but these didn't seem to work as well in my limited testing. super().__init__() self.alpha = _f(alpha) self.beta = _f(beta) def forward(self, X): return self.alpha * X**3 + self.beta def backward(self, dY): # this gradient is intentionally incorrect. return dY class Arcsinh(Layer): def forward(self, X): self.X = X return np.arcsinh(X) def backward(self, dY): return dY / np.sqrt(self.X * self.X + 1) class HardClip(Layer): # aka HardTanh when at default settings def __init__(self, lower=-1.0, upper=1.0): super().__init__() self.lower = _f(lower) self.upper = _f(upper) def forward(self, X): self.X = X return np.clip(X, self.lower, self.upper) def backward(self, dY): return dY * ((self.X <= self.lower) & (self.X >= self.upper))