#!/usr/bin/env python3 import numpy as np nf = np.float32 nfa = lambda x: np.array(x, dtype=nf) ni = np.int nia = lambda x: np.array(x, dtype=ni) from collections import defaultdict # Loss functions class Loss: def mean(self, r): return np.average(self.f(r)) def dmean(self, r): d = self.df(r) return d / len(d) class Squared(Loss): def f(self, r): return np.square(r) def df(self, r): return 2 * r class SquaredHalved(Loss): def f(self, r): return np.square(r) / 2 def df(self, r): return r # Optimizers class Optimizer: def __init__(self, alpha=0.1): self.alpha = nf(alpha) self.reset() def reset(self): pass def compute(self, dW, W): return -self.alpha * dW def update(self, dW, W): W += self.compute(dW, W) # the following optimizers are blatantly lifted from tiny-dnn: # https://github.com/tiny-dnn/tiny-dnn/blob/master/tiny_dnn/optimizers/optimizer.h class Momentum(Optimizer): def __init__(self, alpha=0.01, lamb=0, mu=0.9, nesterov=False): self.alpha = np.asfarray(alpha) # learning rate self.lamb = np.asfarray(lamb) # weight decay self.mu = np.asfarray(mu) # momentum self.nesterov = bool(nesterov) self.reset() def reset(self): self.dWprev = None def compute(self, dW, W): if self.dWprev is None: #self.dWprev = np.zeros_like(dW) self.dWprev = np.copy(dW) V = self.mu * self.dWprev - self.alpha * (dW + W * self.lamb) self.dWprev = V if self.nesterov: return self.mu * V - self.alpha * (dW + W * self.lamb) else: return V class Adam(Optimizer): def __init__(self, alpha=0.001, b1=0.9, b2=0.999, b1_t=0.9, b2_t=0.999, eps=1e-8): self.alpha = nf(alpha) # learning rate self.b1 = nf(b1) # decay term self.b2 = nf(b2) # decay term self.b1_t_default = nf(b1_t) # decay term power t self.b2_t_default = nf(b2_t) # decay term power t self.eps = nf(eps) self.reset() def reset(self): self.mt = None self.vt = None self.b1_t = self.b1_t_default self.b2_t = self.b2_t_default def compute(self, dW, W): if self.mt is None: self.mt = np.zeros_like(W) if self.vt is None: self.vt = np.zeros_like(W) # decay self.b1_t *= self.b1 self.b2_t *= self.b2 self.mt = self.b1 * self.mt + (1 - self.b1) * dW self.vt = self.b2 * self.vt + (1 - self.b2) * dW * dW return -self.alpha * (self.mt / (1 - self.b1_t)) \ / np.sqrt((self.vt / (1 - self.b2_t)) + self.eps) # Abstract Layers _layer_counters = defaultdict(lambda: 0) class Layer: def __init__(self): self.parents = [] self.children = [] self.input_shape = None self.output_shape = None kind = self.__class__.__name__ global _layer_counters _layer_counters[kind] += 1 self.name = "{}_{}".format(kind, _layer_counters[kind]) self.size = None # total weight count (if any) def __str__(self): return self.name # methods we might want to override: def F(self, X): raise NotImplementedError("unimplemented", self) def dF(self, dY): raise NotImplementedError("unimplemented", self) def do_feed(self, child): self.children.append(child) def be_fed(self, parent): self.parents.append(parent) def make_shape(self, shape): assert shape is not None if self.output_shape is None: self.output_shape = shape return shape # TODO: rename this multi and B crap to something actually relevant. def multi(self, B): assert len(B) == 1, self return self.F(B[0]) def dmulti(self, dB): if len(dB) == 1: return self.dF(dB[0]) else: dX = None for dY in dB: if dX is None: dX = self.dF(dY) else: dX += self.dF(dY) return dX # general utility methods: def compatible(self, parent): if self.input_shape is None: # inherit shape from output shape = self.make_shape(parent.output_shape) if shape is None: return False self.input_shape = shape if np.all(self.input_shape == parent.output_shape): return True else: return False def feed(self, child): if not child.compatible(self): fmt = "{} is incompatible with {}: shape mismatch: {} vs. {}" raise Exception(fmt.format(self, child, self.output_shape, child.input_shape)) self.do_feed(child) child.be_fed(self) return child def validate_input(self, X): assert X.shape[1:] == self.input_shape, (str(self), X.shape[1:], self.input_shape) def validate_output(self, Y): assert Y.shape[1:] == self.output_shape, (str(self), Y.shape[1:], self.output_shape) def forward(self, lut): assert len(self.parents) > 0, self #print(" forwarding", self) B = [] for parent in self.parents: # TODO: skip over irrelevant nodes (if any) X = lut[parent] #print("collected parent", parent) self.validate_input(X) B.append(X) Y = self.multi(B) self.validate_output(Y) return Y def backward(self, lut): assert len(self.children) > 0, self #print(" backwarding", self) dB = [] for child in self.children: # TODO: skip over irrelevant nodes (if any) dY = lut[child] #print(" collected child", child) self.validate_output(dY) dB.append(dY) dX = self.dmulti(dB) self.validate_input(dX) return dX # Final Layers class Sum(Layer): def multi(self, B): return np.sum(B, axis=0) def dmulti(self, dB): #assert len(dB) == 1, "unimplemented" return dB[0] # TODO: does this always work? class Input(Layer): def __init__(self, shape): assert shape is not None super().__init__() self.shape = tuple(shape) self.input_shape = self.shape self.output_shape = self.shape def F(self, X): return X def dF(self, dY): #self.dY = dY return np.zeros_like(dY) class Affine(Layer): def __init__(self, a=1, b=0): super().__init__() self.a = nf(a) self.b = nf(b) def F(self, X): return self.a * X + self.b def dF(self, dY): return dY * self.a class Sigmoid(Layer): # aka Logistic def F(self, X): from scipy.special import expit as sigmoid self.sig = sigmoid(X) return X * self.sig def dF(self, dY): return dY * self.sig * (1 - self.sig) class Tanh(Layer): def F(self, X): self.sig = np.tanh(X) return X * self.sig def dF(self, dY): return dY * (1 - self.sig * self.sig) class Relu(Layer): def F(self, X): self.cond = X >= 0 return np.where(self.cond, X, 0) def dF(self, dY): return np.where(self.cond, dY, 0) class GeluApprox(Layer): # paper: https://arxiv.org/abs/1606.08415 # plot: https://www.desmos.com/calculator/ydzgtccsld def F(self, X): from scipy.special import expit as sigmoid self.a = 1.704 * X self.sig = sigmoid(self.a) return X * self.sig def dF(self, dY): return dY * self.sig * (1 + self.a * (1 - self.sig)) class Dense(Layer): def __init__(self, dim): super().__init__() self.dim = ni(dim) self.output_shape = (dim,) self.size = None def init(self, W, dW): ins, outs = self.input_shape[0], self.output_shape[0] self.W = W self.dW = dW self.coeffs = self.W[:self.nW].reshape(ins, outs) self.biases = self.W[self.nW:].reshape(1, outs) self.dcoeffs = self.dW[:self.nW].reshape(ins, outs) self.dbiases = self.dW[self.nW:].reshape(1, outs) # he_normal initialization s = np.sqrt(2 / ins) self.coeffs.flat = np.random.normal(0, s, size=self.nW) self.biases.flat = 0 def make_shape(self, shape): super().make_shape(shape) if len(shape) != 1: return False self.nW = self.dim * shape[0] self.nb = self.dim self.size = self.nW + self.nb return shape def F(self, X): self.X = X Y = X.dot(self.coeffs) \ + self.biases return Y def dF(self, dY): dX = dY.dot(self.coeffs.T) self.dcoeffs[:] = self.X.T.dot(dY) self.dbiases[:] = np.sum(dY, axis=0, keepdims=True) return dX # Model class Model: def __init__(self, x, y): assert isinstance(x, Layer), x assert isinstance(y, Layer), y self.x = x self.y = y self.ordered_nodes = self.traverse([], self.y) node_names = ' '.join([str(node) for node in self.ordered_nodes]) print('{} nodes: {}'.format(len(self.ordered_nodes), node_names)) self.make_weights() def make_weights(self): self.param_count = 0 for node in self.ordered_nodes: if node.size is not None: self.param_count += node.size print(self.param_count) self.W = np.zeros(self.param_count, dtype=nf) self.dW = np.zeros(self.param_count, dtype=nf) offset = 0 for node in self.ordered_nodes: if node.size is not None: end = offset + node.size node.init(self.W[offset:end], self.dW[offset:end]) offset += node.size #print(self.W, self.dW) def traverse(self, nodes, node): if node == x: return [node] for parent in node.parents: if parent not in nodes: new_nodes = self.traverse(nodes, parent) for new_node in new_nodes: if new_node not in nodes: nodes.append(new_node) if nodes: nodes.append(node) return nodes def forward(self, X): lut = dict() input_node = self.ordered_nodes[0] output_node = self.ordered_nodes[-1] lut[input_node] = input_node.multi(np.expand_dims(X, 0)) for node in self.ordered_nodes[1:]: lut[node] = node.forward(lut) return lut[output_node] def backward(self, error): lut = dict() input_node = self.ordered_nodes[0] output_node = self.ordered_nodes[-1] lut[output_node] = output_node.dmulti(np.expand_dims(error, 0)) for node in reversed(self.ordered_nodes[:-1]): lut[node] = node.backward(lut) #return lut[input_node] # meaningless value return self.dW def load_weights(self, fn): # seemingly compatible with keras models at the moment import h5py f = h5py.File(fn) weights = {} def visitor(name, obj): if isinstance(obj, h5py.Dataset): weights[name.split('/')[-1]] = nfa(obj[:]) f.visititems(visitor) f.close() denses = [node for node in self.ordered_nodes if isinstance(node, Dense)] for i in range(len(denses)): a, b = i, i + 1 b_name = "dense_{}".format(b) denses[a].coeffs = weights[b_name+'_W'] denses[a].biases = np.expand_dims(weights[b_name+'_b'], 0) def save_weights(self, fn, overwrite=False): raise NotImplementedError("unimplemented", self) if __name__ == '__main__': # Config from dotmap import DotMap config = DotMap( fn = 'ml/cie_mlp_min.h5', # multi-residual network parameters res_width = 12, res_depth = 3, res_block = 2, # normally 2 for plain resnet res_multi = 4, # normally 1 for plain resnet # style of resnet # only one is implemented so far parallel_style = 'batchless', activation = 'relu', optim = 'adam', nesterov = False, # only used with SGD or Adam momentum = 0.33, # only used with SGD # learning parameters: SGD with restarts LR = 1e-2, epochs = 6, LR_halve_every = 2, restarts = 3, LR_restart_advance = 3, # misc batch_size = 64, init = 'he_normal', loss = 'mse', ) # toy CIE-2000 data from ml.cie_mlp_data import rgbcompare, input_samples, output_samples, x_scale, y_scale def read_data(fn): data = np.load(fn) try: inputs, outputs = data['inputs'], data['outputs'] except KeyError: # because i'm bad at video games. inputs, outputs = data['arr_0'], data['arr_1'] return inputs, outputs inputs, outputs = read_data("ml/cie_mlp_data.npz") valid_inputs, valid_outputs = read_data("ml/cie_mlp_vdata.npz") # Our Test Model x = Input(shape=(input_samples,)) y = x last_size = input_samples activations = dict(sigmoid=Sigmoid, tanh=Tanh, relu=Relu, gelu=GeluApprox) activation = activations[config.activation] for blah in range(config.res_depth): size = config.res_width if last_size != size: y = y.feed(Dense(size)) assert config.parallel_style == 'batchless' skip = y merger = Sum() skip.feed(merger) z_start = skip.feed(activation()) for i in range(config.res_multi): z = z_start for i in range(config.res_block): if i > 0: z = z.feed(activation()) z = z.feed(Dense(size)) z.feed(merger) y = merger last_size = size if last_size != output_samples: y = y.feed(Dense(output_samples)) model = Model(x, y) training = config.epochs > 0 and config.restarts >= 0 if not training: model.load_weights(config.fn) if config.optim == 'adam': assert not config.nesterov, "unimplemented" optim = Adam() elif config.optim == 'sgd': if config.momentum != 0: optim = Momentum(mu=config.momentum, nesterov=config.nesterov) else: optim = Optimizer() else: raise Exception('unknown optimizer', config.optim) if config.loss == 'mse': loss = Squared() elif config.loss == 'mshe': # mushy loss = SquaredHalved() else: raise Exception('unknown objective', config.loss) LR = config.LR LRprod = 0.5**(1/config.LR_halve_every) # Training def measure_loss(): predicted = model.forward(inputs / x_scale) residual = predicted - outputs / y_scale err = loss.mean(residual) print("train loss: {:11.7f}".format(err)) print("improvement: {:+7.2f}%".format((0.0007031 / err - 1) * 100)) predicted = model.forward(valid_inputs / x_scale) residual = predicted - valid_outputs / y_scale err = loss.mean(residual) print("valid loss: {:11.7f}".format(err)) print("improvement: {:+7.2f}%".format((0.0007159 / err - 1) * 100)) for i in range(config.restarts + 1): measure_loss() if i > 0: print("restarting") assert inputs.shape[0] % config.batch_size == 0, \ "inputs is not evenly divisible by batch_size" # TODO: lift this restriction batch_count = inputs.shape[0] // config.batch_size for e in range(config.epochs): indices = np.arange(len(inputs)) np.random.shuffle(indices) shuffled_inputs = inputs[indices] / x_scale shuffled_outputs = outputs[indices] / y_scale optim.alpha = LR * LRprod**e cumsum_loss = 0 for b in range(batch_count): bi = b * config.batch_size batch_inputs = shuffled_inputs[ bi:bi+config.batch_size] batch_outputs = shuffled_outputs[bi:bi+config.batch_size] predicted = model.forward(batch_inputs) residual = predicted - batch_outputs dW = model.backward(loss.dmean(residual)) optim.update(dW, model.W) # note: we don't actually need this for training, only monitoring. cumsum_loss += loss.mean(residual) print("avg loss: {:10.6f}".format(cumsum_loss / batch_count)) LR *= LRprod**config.LR_restart_advance measure_loss() #if training: # model.save_weights(config.fn, overwrite=True) # Evaluation a = (192, 128, 64) b = (64, 128, 192) X = np.expand_dims(np.hstack((a, b)), 0) / x_scale P = model.forward(X) * y_scale print("truth:", rgbcompare(a, b)) print("network:", np.squeeze(P))