begin rewriting Ritual
This commit is contained in:
parent
2c921d34c2
commit
fd2fc4bd76
3 changed files with 106 additions and 18 deletions
|
@ -38,7 +38,7 @@ class StochMRitual(Ritual):
|
|||
self.W = np.copy(model.W)
|
||||
super().prepare(model)
|
||||
|
||||
def learn(self, inputs, outputs):
|
||||
def _learn(self, inputs, outputs):
|
||||
# an experiment:
|
||||
# assert self.learner.rate < 10, self.learner.rate
|
||||
# self.gamma = 1 - 1/2**(1 - np.log10(self.learner.rate))
|
||||
|
@ -51,7 +51,7 @@ class StochMRitual(Ritual):
|
|||
self.model.W[:] = self.W
|
||||
return residual
|
||||
|
||||
def update(self):
|
||||
def _update(self):
|
||||
super().update()
|
||||
f = 0.5
|
||||
for layer in self.model.ordered_nodes:
|
||||
|
@ -68,7 +68,7 @@ class NoisyRitual(Ritual):
|
|||
self.gradient_noise = _f(gradient_noise)
|
||||
super().__init__(learner)
|
||||
|
||||
def learn(self, inputs, outputs):
|
||||
def _learn(self, inputs, outputs):
|
||||
# this is pretty crude
|
||||
if self.input_noise > 0:
|
||||
s = self.input_noise
|
||||
|
@ -78,7 +78,7 @@ class NoisyRitual(Ritual):
|
|||
outputs = outputs + np.random.normal(0, s, size=outputs.shape)
|
||||
return super().learn(inputs, outputs)
|
||||
|
||||
def update(self):
|
||||
def _update(self):
|
||||
# gradient noise paper: https://arxiv.org/abs/1511.06807
|
||||
if self.gradient_noise > 0:
|
||||
size = len(self.model.dW)
|
||||
|
|
|
@ -1,7 +1,11 @@
|
|||
import types
|
||||
import numpy as np
|
||||
from collections import namedtuple
|
||||
|
||||
from .float import _f, _0
|
||||
from .utility import batchize
|
||||
|
||||
Losses = namedtuple("Losses", ["avg_loss", "avg_mloss", "losses", "mlosses"])
|
||||
|
||||
|
||||
class Ritual: # i'm just making up names at this point.
|
||||
|
@ -14,21 +18,49 @@ class Ritual: # i'm just making up names at this point.
|
|||
self.en = 0
|
||||
self.bn = 0
|
||||
|
||||
def learn(self, inputs, outputs):
|
||||
def prepare(self, model):
|
||||
self.en = 0
|
||||
self.bn = 0
|
||||
self.model = model
|
||||
|
||||
def _learn(self, inputs, outputs):
|
||||
error, predicted = self.model.forward(inputs, outputs)
|
||||
self.model.backward(predicted, outputs)
|
||||
self.model.regulate()
|
||||
return error, predicted
|
||||
|
||||
def update(self):
|
||||
def _update(self):
|
||||
optim = self.learner.optim
|
||||
optim.model = self.model
|
||||
optim.update(self.model.dW, self.model.W)
|
||||
|
||||
def prepare(self, model):
|
||||
self.en = 0
|
||||
self.bn = 0
|
||||
self.model = model
|
||||
def _measure(self, predicted, outputs):
|
||||
loss = self.model.loss.forward(predicted, outputs)
|
||||
if np.isnan(loss):
|
||||
raise Exception("nan")
|
||||
self.losses.append(loss)
|
||||
self.cumsum_loss += loss
|
||||
|
||||
mloss = self.model.mloss.forward(predicted, outputs)
|
||||
if np.isnan(mloss):
|
||||
raise Exception("nan")
|
||||
self.mlosses.append(mloss)
|
||||
self.cumsum_mloss += mloss
|
||||
|
||||
def _train_batch_new(self, inputs, outputs, b, batch_count):
|
||||
if self.learner.per_batch:
|
||||
self.learner.batch(b / batch_count)
|
||||
|
||||
error, predicted = self.model.forward(inputs, outputs)
|
||||
error += self.model.regulate_forward()
|
||||
self.model.backward(predicted, outputs)
|
||||
self.model.regulate()
|
||||
|
||||
optim = self.learner.optim
|
||||
optim.model = self.model
|
||||
optim.update(self.model.dW, self.model.W)
|
||||
|
||||
return predicted
|
||||
|
||||
def _train_batch(self, batch_inputs, batch_outputs, b, batch_count,
|
||||
test_only=False, loss_logging=False, mloss_logging=True):
|
||||
|
@ -38,9 +70,9 @@ class Ritual: # i'm just making up names at this point.
|
|||
if test_only:
|
||||
predicted = self.model.evaluate(batch_inputs, deterministic=True)
|
||||
else:
|
||||
error, predicted = self.learn(batch_inputs, batch_outputs)
|
||||
error, predicted = self._learn(batch_inputs, batch_outputs)
|
||||
self.model.regulate_forward()
|
||||
self.update()
|
||||
self._update()
|
||||
|
||||
if loss_logging:
|
||||
batch_loss = self.model.loss.forward(predicted, batch_outputs)
|
||||
|
@ -57,6 +89,24 @@ class Ritual: # i'm just making up names at this point.
|
|||
self.mlosses.append(batch_mloss)
|
||||
self.cumsum_mloss += batch_mloss
|
||||
|
||||
def train(self, batch_gen, batch_count, clear_grad=True):
|
||||
assert self.model is not None, "call prepare(model) before training"
|
||||
self.en += 1
|
||||
|
||||
self.cumsum_loss, self.cumsum_mloss = _0, _0
|
||||
self.losses, self.mlosses = [], []
|
||||
|
||||
for b, (inputs, outputs) in enumerate(batch_gen):
|
||||
self.bn += 1
|
||||
if clear_grad:
|
||||
self.model.clear_grad()
|
||||
predicted = self._train_batch_new(inputs, outputs, b, batch_count)
|
||||
self._measure(predicted, outputs)
|
||||
|
||||
avg_mloss = self.cumsum_mloss / _f(batch_count)
|
||||
avg_loss = self.cumsum_loss / _f(batch_count)
|
||||
return Losses(avg_loss, avg_mloss, self.losses, self.mlosses)
|
||||
|
||||
def train_batched(self, inputs_or_generator, outputs_or_batch_count,
|
||||
batch_size=None,
|
||||
return_losses=False, test_only=False, shuffle=True,
|
||||
|
@ -128,10 +178,22 @@ class Ritual: # i'm just making up names at this point.
|
|||
return avg_mloss, self.mlosses
|
||||
return avg_mloss
|
||||
|
||||
def test_batched(self, inputs, outputs, *args, **kwargs):
|
||||
return self.train_batched(inputs, outputs, *args,
|
||||
test_only=True, **kwargs)
|
||||
def test_batched(self, inputs, outputs, batch_size=None):
|
||||
assert self.model is not None, "call prepare(model) before testing"
|
||||
|
||||
def train_batched_gen(self, generator, batch_count, *args, **kwargs):
|
||||
return self.train_batched(generator, batch_count, *args,
|
||||
shuffle=False, **kwargs)
|
||||
if batch_size is None:
|
||||
batch_size = len(inputs)
|
||||
|
||||
self.cumsum_loss, self.cumsum_mloss = _0, _0
|
||||
self.losses, self.mlosses = [], []
|
||||
|
||||
batch_gen, batch_count = batchize(inputs, outputs, batch_size,
|
||||
shuffle=False)
|
||||
|
||||
for inputs, outputs in batch_gen:
|
||||
predicted = self.model.evaluate(inputs)
|
||||
self._measure(predicted, outputs)
|
||||
|
||||
avg_mloss = self.cumsum_mloss / _f(batch_count)
|
||||
avg_loss = self.cumsum_loss / _f(batch_count)
|
||||
return Losses(avg_loss, avg_mloss, self.losses, self.mlosses)
|
||||
|
|
|
@ -37,6 +37,32 @@ def onehot(y):
|
|||
return Y
|
||||
|
||||
|
||||
def batchize(inputs, outputs, batch_size, shuffle=True):
|
||||
batch_count = np.ceil(len(inputs) / batch_size).astype(int)
|
||||
|
||||
if shuffle:
|
||||
def gen():
|
||||
indices = np.arange(len(inputs))
|
||||
np.random.shuffle(indices)
|
||||
|
||||
for b in range(batch_count):
|
||||
bi = b * batch_size
|
||||
batch_indices = indices[bi:bi + batch_size]
|
||||
batch_inputs = inputs[batch_indices]
|
||||
batch_outputs = outputs[batch_indices]
|
||||
yield batch_inputs, batch_outputs
|
||||
|
||||
else:
|
||||
def gen():
|
||||
for b in range(batch_count):
|
||||
bi = b * batch_size
|
||||
batch_inputs = inputs[bi:bi + batch_size]
|
||||
batch_outputs = outputs[bi:bi + batch_size]
|
||||
yield batch_inputs, batch_outputs
|
||||
|
||||
return gen(), batch_count
|
||||
|
||||
|
||||
# more
|
||||
|
||||
_log_was_update = False
|
||||
|
|
Loading…
Reference in a new issue