From fcdb7e1918f614336e8c6ab199169a04cf8f4512 Mon Sep 17 00:00:00 2001 From: Connor Olding Date: Mon, 27 Feb 2017 22:52:39 +0000 Subject: [PATCH] . --- optim_nn_mnist.py | 101 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 101 insertions(+) create mode 100644 optim_nn_mnist.py diff --git a/optim_nn_mnist.py b/optim_nn_mnist.py new file mode 100644 index 0000000..70b3ea1 --- /dev/null +++ b/optim_nn_mnist.py @@ -0,0 +1,101 @@ +#!/usr/bin/env python3 + +from optim_nn import * + +#np.random.seed(42069) + +# train loss: 4.194040e-02 +# train accuracy: 99.46% +# valid loss: 1.998158e-01 +# valid accuracy: 97.26% +# TODO: add dropout or something to lessen overfitting + +lr = 0.01 +epochs = 24 +starts = 2 +bs = 100 + +mnist_dim = 28 +mnist_classes = 10 +def get_mnist(fn='mnist.npz'): + import os.path + if not os.path.exists(fn): + from keras.datasets import mnist + from keras.utils.np_utils import to_categorical + (X_train, y_train), (X_test, y_test) = mnist.load_data() + X_train = X_train.reshape(X_train.shape[0], 1, mnist_dim, mnist_dim) + X_test = X_test.reshape(X_test.shape[0], 1, mnist_dim, mnist_dim) + X_train = X_train.astype('float32') / 255 + X_test = X_test.astype('float32') / 255 + Y_train = to_categorical(y_train, mnist_classes) + Y_test = to_categorical(y_test, mnist_classes) + np.savez_compressed(fn, + X_train=X_train, + Y_train=Y_train, + X_test=X_test, + Y_test=Y_test) + lament("mnist successfully saved to", fn) + lament("please re-run this program to continue") + sys.exit(1) + + with np.load(fn) as f: + return f['X_train'], f['Y_train'], f['X_test'], f['Y_test'] + +inputs, outputs, valid_inputs, valid_outputs = get_mnist() + +x = Input(shape=inputs.shape[1:]) +y = x + +y = y.feed(Reshape(new_shape=(mnist_dim, mnist_dim,))) +y = y.feed(Denses(4, axis=0, init=init_he_normal)) +y = y.feed(Denses(12, axis=1, init=init_he_normal)) +y = y.feed(Flatten()) +y = y.feed(Dense(y.output_shape[0], init=init_he_normal)) +y = y.feed(Relu()) + +y = y.feed(Dense(mnist_classes, init=init_glorot_uniform)) +y = y.feed(Softmax()) + +model = Model(x, y, unsafe=True) + +optim = Adam() +learner = SGDR(optim, epochs=epochs//starts, rate=lr, + restarts=starts - 1, restart_decay=0.5, + expando=lambda i:0) + +loss = CategoricalCrossentropy() +mloss = Accuracy() + +ritual = Ritual(learner=learner, loss=loss, mloss=mloss) + +log('parameters', model.param_count) + +ritual.prepare(model) + +def measure_error(): + def print_error(name, inputs, outputs, comparison=None): + loss, mloss, _, _ = ritual.test_batched(inputs, outputs, bs, return_losses='both') + log(name + " loss", "{:12.6e}".format(loss)) + log(name + " accuracy", "{:6.2f}%".format(mloss * 100)) + return loss, mloss + + print_error("train", inputs, outputs) + print_error("valid", valid_inputs, valid_outputs) + +measure_error() + +while learner.next(): + indices = np.arange(inputs.shape[0]) + np.random.shuffle(indices) + shuffled_inputs = inputs[indices] + shuffled_outputs = outputs[indices] + + avg_loss, avg_mloss, _, _ = ritual.train_batched( + shuffled_inputs, shuffled_outputs, + batch_size=bs, + return_losses='both') + fmt = "rate {:10.8f}, loss {:12.6e}, accuracy {:6.2f}%" + log("epoch {}".format(learner.epoch + 1), + fmt.format(learner.rate, avg_loss, avg_mloss * 100)) + +measure_error()